Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016325835> ?p ?o ?g. }
- W2016325835 endingPage "89" @default.
- W2016325835 startingPage "63" @default.
- W2016325835 abstract "Nanomaterials are structures with dimensions characteristically much below 100 nm. The unique physical properties (e.g., conductivity, reactivity) have placed these nanomaterials in the forefront of emerging technologies. Significant enhancement of optical, mechanical, electrical, structural, and magnetic properties are commonly found through the use of novel nanomaterials. One of the most exciting classes of nanomaterials is represented by the carbon nanotubes. Carbon nanotubes, including single-wall carbon nanotubes, multi-wall carbon nanotubes, and concentric tubes have been shown to possess superior electronic, thermal, and mechanical properties to be attractive for a wide range of potential applications They sometimes bunch to form ropes and show great potential for use as highly sensitive electronic (bio)sensors due to the very small diameter, directly comparable to the size of single analyte molecules and that every single carbon atom is in direct contact with the environment, allowing optimal interaction with nearby molecules. Composite materials based on integration of carbon nanotubes and some other materials to possess properties of the individual components with a synergistic effect have gained growing interest. Materials for such purposes include conducting polymers, redox mediators and metal nanoparticles. These tubes provide the necessary building blocks for electronic circuits and afford new opportunities for chip miniaturization, which can dramatically improve the scaling prospects for the semiconductor technologies and the fabrication of devices, including field-effect transistors and sensors. Carbon nanotubes are one of the ideal materials for the preparation of nanoelectronic devices and nanosensors due to the unique electrical properties, outstanding electrocatalytic properties, high chemical stability and larger specific surface area of nanotubes. Carbon nanotubes are attractive material for supercapacitors due to their unique one-dimensional mesoporous structure, high specific surface area, low resistivity and good chemical stability. Nanoscaled composite materials based on carbon nanotubes have been broadly used due to their high chemical inertness, non-swelling effect, high purity and rigidity. The integration of carbon nanotubes with organics, biomaterials and metal nanoparticles has led to the development of new hybrid materials and sensors. Hybrid nanoscale materials are well established in various processes such as organic and inorganic compounds, nucleic acid detachment, protein separation, and immobilization of enzymes. Those nanostructures can be used as the building blocks for electronics and nanodevices because uniform organic and metal coatings with the small and monodisperse domain sizes are crucial to optimize nanoparticle conductivity and to detect changes in conductivity and absorption induced by analyte adsorption on these surfaces. The highly ordered assembly of zero-dimensional and one-dimensional nanoparticles is not only necessary for making functional devices, but also presents an opportunity to develop novel collective properties." @default.
- W2016325835 created "2016-06-24" @default.
- W2016325835 creator A5054705849 @default.
- W2016325835 date "2009-09-01" @default.
- W2016325835 modified "2023-10-14" @default.
- W2016325835 title "Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes" @default.
- W2016325835 cites W11476871 @default.
- W2016325835 cites W1494776434 @default.
- W2016325835 cites W1555450157 @default.
- W2016325835 cites W1555799543 @default.
- W2016325835 cites W1646294624 @default.
- W2016325835 cites W1822170763 @default.
- W2016325835 cites W1841560135 @default.
- W2016325835 cites W1918265548 @default.
- W2016325835 cites W1928214179 @default.
- W2016325835 cites W1930404622 @default.
- W2016325835 cites W1945648000 @default.
- W2016325835 cites W1963641510 @default.
- W2016325835 cites W1964249310 @default.
- W2016325835 cites W1965680705 @default.
- W2016325835 cites W1967320898 @default.
- W2016325835 cites W1973071653 @default.
- W2016325835 cites W1974516345 @default.
- W2016325835 cites W1974785254 @default.
- W2016325835 cites W1974857071 @default.
- W2016325835 cites W1975518034 @default.
- W2016325835 cites W1976017095 @default.
- W2016325835 cites W1976146412 @default.
- W2016325835 cites W1977054660 @default.
- W2016325835 cites W1977622737 @default.
- W2016325835 cites W1977770258 @default.
- W2016325835 cites W1977786515 @default.
- W2016325835 cites W1979224914 @default.
- W2016325835 cites W1980031520 @default.
- W2016325835 cites W1980516378 @default.
- W2016325835 cites W1982371556 @default.
- W2016325835 cites W1982822058 @default.
- W2016325835 cites W1982904490 @default.
- W2016325835 cites W1983069685 @default.
- W2016325835 cites W1984218959 @default.
- W2016325835 cites W1984624867 @default.
- W2016325835 cites W1986129774 @default.
- W2016325835 cites W1989856919 @default.
- W2016325835 cites W1990009882 @default.
- W2016325835 cites W1990187902 @default.
- W2016325835 cites W1990304199 @default.
- W2016325835 cites W1990978879 @default.
- W2016325835 cites W1991265458 @default.
- W2016325835 cites W1991545630 @default.
- W2016325835 cites W1992071259 @default.
- W2016325835 cites W1992704241 @default.
- W2016325835 cites W1992731231 @default.
- W2016325835 cites W1992855179 @default.
- W2016325835 cites W1993119139 @default.
- W2016325835 cites W1994293107 @default.
- W2016325835 cites W1995016496 @default.
- W2016325835 cites W1995333696 @default.
- W2016325835 cites W1995851150 @default.
- W2016325835 cites W1996252455 @default.
- W2016325835 cites W1996457075 @default.
- W2016325835 cites W1996890746 @default.
- W2016325835 cites W1997292933 @default.
- W2016325835 cites W1997505702 @default.
- W2016325835 cites W1998531611 @default.
- W2016325835 cites W1998957811 @default.
- W2016325835 cites W1999307757 @default.
- W2016325835 cites W1999421581 @default.
- W2016325835 cites W1999679934 @default.
- W2016325835 cites W1999744943 @default.
- W2016325835 cites W1999829267 @default.
- W2016325835 cites W1999841688 @default.
- W2016325835 cites W2000476533 @default.
- W2016325835 cites W2000673688 @default.
- W2016325835 cites W2000914851 @default.
- W2016325835 cites W2001040425 @default.
- W2016325835 cites W2001788360 @default.
- W2016325835 cites W2002744212 @default.
- W2016325835 cites W2002952098 @default.
- W2016325835 cites W2003712386 @default.
- W2016325835 cites W2003869165 @default.
- W2016325835 cites W2004446708 @default.
- W2016325835 cites W2004807942 @default.
- W2016325835 cites W2005659834 @default.
- W2016325835 cites W2006171263 @default.
- W2016325835 cites W2006225923 @default.
- W2016325835 cites W2006682685 @default.
- W2016325835 cites W2006900483 @default.
- W2016325835 cites W2008302913 @default.
- W2016325835 cites W2008403913 @default.
- W2016325835 cites W2008771485 @default.
- W2016325835 cites W2009055411 @default.
- W2016325835 cites W2009627598 @default.
- W2016325835 cites W2010598859 @default.
- W2016325835 cites W2010784078 @default.
- W2016325835 cites W2010825644 @default.
- W2016325835 cites W2011221597 @default.
- W2016325835 cites W2011243422 @default.
- W2016325835 cites W2011626035 @default.