Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016348547> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2016348547 abstract "Energy consumption predictions are essential and are required in the studies of capacity expansion, energy supply strategy, capital investment, revenue analysis and market research management. In the recent years artificial neural networks (ANN) have attracted much attention and many interesting ANN applications have been reported in power system areas, due to their computational speed, their ability to handle complex non-linear functions, robustness and great efficiency, even in cases where full information for the studied problem is absent. In this paper, several ANN models were addressed to identify the future energy consumption. Each model has been constructed using different structures, learning algorithms and transfer functions in order the best generalizing ability to be achieved. Actual input and output data were used in the training, validation and testing process. A comparison among the developed neural network models was performed in order the most suitable model to be selected. Finally the selected ANN model has been used for the prediction of the Hellenic energy consumption in the years ahead." @default.
- W2016348547 created "2016-06-24" @default.
- W2016348547 creator A5008586987 @default.
- W2016348547 creator A5024570324 @default.
- W2016348547 creator A5034281379 @default.
- W2016348547 creator A5036983053 @default.
- W2016348547 creator A5043250587 @default.
- W2016348547 date "2010-09-01" @default.
- W2016348547 modified "2023-09-26" @default.
- W2016348547 title "Design of artificial neural network models for the prediction of the Hellenic energy consumption" @default.
- W2016348547 cites W1975167999 @default.
- W2016348547 cites W1984367183 @default.
- W2016348547 cites W1999209109 @default.
- W2016348547 cites W2033592659 @default.
- W2016348547 cites W2055141465 @default.
- W2016348547 cites W2101927907 @default.
- W2016348547 cites W2107374807 @default.
- W2016348547 cites W2540007442 @default.
- W2016348547 cites W3123459903 @default.
- W2016348547 doi "https://doi.org/10.1109/neurel.2010.5644049" @default.
- W2016348547 hasPublicationYear "2010" @default.
- W2016348547 type Work @default.
- W2016348547 sameAs 2016348547 @default.
- W2016348547 citedByCount "10" @default.
- W2016348547 countsByYear W20163485472015 @default.
- W2016348547 countsByYear W20163485472016 @default.
- W2016348547 countsByYear W20163485472017 @default.
- W2016348547 countsByYear W20163485472018 @default.
- W2016348547 countsByYear W20163485472019 @default.
- W2016348547 countsByYear W20163485472022 @default.
- W2016348547 countsByYear W20163485472023 @default.
- W2016348547 crossrefType "proceedings-article" @default.
- W2016348547 hasAuthorship W2016348547A5008586987 @default.
- W2016348547 hasAuthorship W2016348547A5024570324 @default.
- W2016348547 hasAuthorship W2016348547A5034281379 @default.
- W2016348547 hasAuthorship W2016348547A5036983053 @default.
- W2016348547 hasAuthorship W2016348547A5043250587 @default.
- W2016348547 hasConcept C104317684 @default.
- W2016348547 hasConcept C119599485 @default.
- W2016348547 hasConcept C119857082 @default.
- W2016348547 hasConcept C121955636 @default.
- W2016348547 hasConcept C127413603 @default.
- W2016348547 hasConcept C144133560 @default.
- W2016348547 hasConcept C154945302 @default.
- W2016348547 hasConcept C185592680 @default.
- W2016348547 hasConcept C195487862 @default.
- W2016348547 hasConcept C2780165032 @default.
- W2016348547 hasConcept C41008148 @default.
- W2016348547 hasConcept C50644808 @default.
- W2016348547 hasConcept C55493867 @default.
- W2016348547 hasConcept C63479239 @default.
- W2016348547 hasConceptScore W2016348547C104317684 @default.
- W2016348547 hasConceptScore W2016348547C119599485 @default.
- W2016348547 hasConceptScore W2016348547C119857082 @default.
- W2016348547 hasConceptScore W2016348547C121955636 @default.
- W2016348547 hasConceptScore W2016348547C127413603 @default.
- W2016348547 hasConceptScore W2016348547C144133560 @default.
- W2016348547 hasConceptScore W2016348547C154945302 @default.
- W2016348547 hasConceptScore W2016348547C185592680 @default.
- W2016348547 hasConceptScore W2016348547C195487862 @default.
- W2016348547 hasConceptScore W2016348547C2780165032 @default.
- W2016348547 hasConceptScore W2016348547C41008148 @default.
- W2016348547 hasConceptScore W2016348547C50644808 @default.
- W2016348547 hasConceptScore W2016348547C55493867 @default.
- W2016348547 hasConceptScore W2016348547C63479239 @default.
- W2016348547 hasLocation W20163485471 @default.
- W2016348547 hasOpenAccess W2016348547 @default.
- W2016348547 hasPrimaryLocation W20163485471 @default.
- W2016348547 hasRelatedWork W2363475415 @default.
- W2016348547 hasRelatedWork W2961085424 @default.
- W2016348547 hasRelatedWork W3046775127 @default.
- W2016348547 hasRelatedWork W3170094116 @default.
- W2016348547 hasRelatedWork W4285260836 @default.
- W2016348547 hasRelatedWork W4286629047 @default.
- W2016348547 hasRelatedWork W4306321456 @default.
- W2016348547 hasRelatedWork W4306674287 @default.
- W2016348547 hasRelatedWork W1629725936 @default.
- W2016348547 hasRelatedWork W4224009465 @default.
- W2016348547 isParatext "false" @default.
- W2016348547 isRetracted "false" @default.
- W2016348547 magId "2016348547" @default.
- W2016348547 workType "article" @default.