Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016361185> ?p ?o ?g. }
- W2016361185 endingPage "234" @default.
- W2016361185 startingPage "209" @default.
- W2016361185 abstract "Thirty new platinum-group element (PGE) analyses of various basalt types from Iceland are presented in this study. The analysed samples are divided into three groups based on their Mg-contents, high-Mg tholeiites (10–14 wt.% MgO), composed of primitive olivine tholeiites and picrites, evolved olivine tholeiites (7–10 wt.% MgO) and evolved basalts (4–7 wt.% MgO) consisting of FeTi basalts, quartz tholeiites and alkaline basalts. The high-Mg tholeiites have a range of compositions between a relatively Cu-rich and Pd-poor (120 ppm Cu and 6 ppb Pd) end-member and a relatively Cu-poor and Pd-rich (74 ppm Cu and 17 ppb Pd) end-member. There is a positive correlation between the highly siderophile elements, whereas Cu and Pd correlate negatively between the Cu-rich primitive olivine tholeiite and the Cu-poor picrite end-member. Negative correlation between Cu and the PGEs cannot be reconciled in a model where the two end-members form by varying degrees of partial melting of a common source. The sub-primitive mantle Cu/Pd ratio of the picrite end-member (∼4300) could indicate a strongly depleted mantle source, where Pd was efficiently retained in mantle sulphide, relative to Cu, during previous melt extraction episodes. In mantle melting models presented here, the picrite composition can be approximated by 25% melting of a mantle source that previously lost a normal MORB component (F∼15%). The olivine tholeiite end-member (Cu/Pd∼19000) can be approximated in mantle melting models by assuming derivation from a separate source, one slightly Cu-enriched source undergoing melting beneath a rift. Based on Cu and Pd variations, the majority of high-Mg tholeiites are interpreted to be mixtures between melts derived from highly depleted to slightly enriched sources, which is consistent with previous studies of Sr–Nd isotopic variations. The similar range in Cu/Pd ratios of the high-Mg tholeiites and the evolved olivine tholeiites could infer that the latter evolved from parental liquids similar to the high-Mg tholeiites under S-undersaturated conditions. Relatively high Pd and low Ir concentrations in the evolved olivine tholeiite samples (∼7 wt.% MgO) indicate, too, that these magmas underwent S-undersaturated fractionation during which Pd accumulated in the melt whereas Ir was incorporated into the fractionating assemblage. This is in contrast to the group of evolved basalts with less than 7 wt.% MgO with low PGE contents and high Cu/Pd ratios that strongly suggest that these samples have experienced S-saturation. We propose a scenario for melt generation beneath the Icelandic rift zone, where picritic magma is generated from a highly depleted mantle, whereas primitive olivine tholeiite magma forms from the depleted as well as a Cu-enriched source. It is proposed that Cu-enriched mantle domains were exhausted at depth since their melting products are absent in the most depleted picrite derived from the uppermost part of the central melting region. The olivine tholeiites can be approximated by around 11–12% partial melting in a triangular melting regime beneath the Icelandic rift zone. The olivine tholeiites are interpreted to reflect efficient melt collection from the deepest and most distal parts of the melting triangle. In contrast, the picrite represent a high degree of melting (F∼25%) without incorporation of melt batches from the Cu-enriched mantle source." @default.
- W2016361185 created "2016-06-24" @default.
- W2016361185 creator A5065891885 @default.
- W2016361185 creator A5069448363 @default.
- W2016361185 creator A5075071807 @default.
- W2016361185 date "2003-05-01" @default.
- W2016361185 modified "2023-10-05" @default.
- W2016361185 title "Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland" @default.
- W2016361185 cites W1509269631 @default.
- W2016361185 cites W1533507126 @default.
- W2016361185 cites W1621974787 @default.
- W2016361185 cites W1965569280 @default.
- W2016361185 cites W1966987822 @default.
- W2016361185 cites W1970767963 @default.
- W2016361185 cites W1974586982 @default.
- W2016361185 cites W1978598356 @default.
- W2016361185 cites W1980529631 @default.
- W2016361185 cites W1990814837 @default.
- W2016361185 cites W1992736932 @default.
- W2016361185 cites W1993785159 @default.
- W2016361185 cites W1995798238 @default.
- W2016361185 cites W1996186259 @default.
- W2016361185 cites W2001514035 @default.
- W2016361185 cites W2007875577 @default.
- W2016361185 cites W2017499090 @default.
- W2016361185 cites W2022648729 @default.
- W2016361185 cites W2026357419 @default.
- W2016361185 cites W2032279682 @default.
- W2016361185 cites W2035722108 @default.
- W2016361185 cites W2040615406 @default.
- W2016361185 cites W2045068986 @default.
- W2016361185 cites W2055945339 @default.
- W2016361185 cites W2056670083 @default.
- W2016361185 cites W2059703220 @default.
- W2016361185 cites W2060472760 @default.
- W2016361185 cites W2063053631 @default.
- W2016361185 cites W2063865114 @default.
- W2016361185 cites W2067635834 @default.
- W2016361185 cites W2074037617 @default.
- W2016361185 cites W2076153001 @default.
- W2016361185 cites W2078744273 @default.
- W2016361185 cites W2079629767 @default.
- W2016361185 cites W2080704945 @default.
- W2016361185 cites W2081636312 @default.
- W2016361185 cites W2081656000 @default.
- W2016361185 cites W2082384972 @default.
- W2016361185 cites W2086294685 @default.
- W2016361185 cites W2093983309 @default.
- W2016361185 cites W2097756509 @default.
- W2016361185 cites W2100029905 @default.
- W2016361185 cites W2119438235 @default.
- W2016361185 cites W2122036745 @default.
- W2016361185 cites W2141759440 @default.
- W2016361185 cites W2148342629 @default.
- W2016361185 cites W2152566905 @default.
- W2016361185 cites W2161668395 @default.
- W2016361185 cites W2164795039 @default.
- W2016361185 cites W2169117356 @default.
- W2016361185 cites W2170274166 @default.
- W2016361185 cites W2325840409 @default.
- W2016361185 doi "https://doi.org/10.1016/s0009-2541(02)00414-x" @default.
- W2016361185 hasPublicationYear "2003" @default.
- W2016361185 type Work @default.
- W2016361185 sameAs 2016361185 @default.
- W2016361185 citedByCount "54" @default.
- W2016361185 countsByYear W20163611852012 @default.
- W2016361185 countsByYear W20163611852013 @default.
- W2016361185 countsByYear W20163611852014 @default.
- W2016361185 countsByYear W20163611852015 @default.
- W2016361185 countsByYear W20163611852016 @default.
- W2016361185 countsByYear W20163611852017 @default.
- W2016361185 countsByYear W20163611852018 @default.
- W2016361185 countsByYear W20163611852021 @default.
- W2016361185 countsByYear W20163611852022 @default.
- W2016361185 countsByYear W20163611852023 @default.
- W2016361185 crossrefType "journal-article" @default.
- W2016361185 hasAuthorship W2016361185A5065891885 @default.
- W2016361185 hasAuthorship W2016361185A5069448363 @default.
- W2016361185 hasAuthorship W2016361185A5075071807 @default.
- W2016361185 hasConcept C11872896 @default.
- W2016361185 hasConcept C127313418 @default.
- W2016361185 hasConcept C140441402 @default.
- W2016361185 hasConcept C161509811 @default.
- W2016361185 hasConcept C161790260 @default.
- W2016361185 hasConcept C17409809 @default.
- W2016361185 hasConcept C185592680 @default.
- W2016361185 hasConcept C2779417233 @default.
- W2016361185 hasConcept C2780364934 @default.
- W2016361185 hasConcept C2781251403 @default.
- W2016361185 hasConcept C518104683 @default.
- W2016361185 hasConcept C55493867 @default.
- W2016361185 hasConcept C67236022 @default.
- W2016361185 hasConcept C79572550 @default.
- W2016361185 hasConcept C83948199 @default.
- W2016361185 hasConceptScore W2016361185C11872896 @default.
- W2016361185 hasConceptScore W2016361185C127313418 @default.
- W2016361185 hasConceptScore W2016361185C140441402 @default.
- W2016361185 hasConceptScore W2016361185C161509811 @default.