Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016361837> ?p ?o ?g. }
- W2016361837 endingPage "737" @default.
- W2016361837 startingPage "721" @default.
- W2016361837 abstract "Summary The paper discusses the estimation of an unknown population size n. Suppose that an identification mechanism can identify nobs cases. The Horvitz–Thompson estimator of n adjusts this number by the inverse of 1−p0, where the latter is the probability of not identifying a case. When repeated counts of identifying the same case are available, we can use the counting distribution for estimating p0 to solve the problem. Frequently, the Poisson distribution is used and, more recently, mixtures of Poisson distributions. Maximum likelihood estimation is discussed by means of the EM algorithm. For truncated Poisson mixtures, a nested EM algorithm is suggested and illustrated for several application cases. The algorithmic principles are used to show an inequality, stating that the Horvitz–Thompson estimator of n by using the mixed Poisson model is always at least as large as the estimator by using a homogeneous Poisson model. In turn, if the homogeneous Poisson model is misspecified it will, potentially strongly, underestimate the true population size. Examples from various areas illustrate this finding." @default.
- W2016361837 created "2016-06-24" @default.
- W2016361837 creator A5035868878 @default.
- W2016361837 creator A5068843729 @default.
- W2016361837 date "2005-03-03" @default.
- W2016361837 modified "2023-10-18" @default.
- W2016361837 title "Nonparametric Maximum Likelihood Estimation of Population Size Based on the Counting Distribution" @default.
- W2016361837 cites W1862923460 @default.
- W2016361837 cites W1971050127 @default.
- W2016361837 cites W1975095546 @default.
- W2016361837 cites W1976550134 @default.
- W2016361837 cites W1997817781 @default.
- W2016361837 cites W2007144265 @default.
- W2016361837 cites W2013931661 @default.
- W2016361837 cites W2030895949 @default.
- W2016361837 cites W2032879594 @default.
- W2016361837 cites W2033077905 @default.
- W2016361837 cites W2033936134 @default.
- W2016361837 cites W2037804308 @default.
- W2016361837 cites W2038003834 @default.
- W2016361837 cites W2043043077 @default.
- W2016361837 cites W2049122485 @default.
- W2016361837 cites W2061286017 @default.
- W2016361837 cites W2065413831 @default.
- W2016361837 cites W2077054751 @default.
- W2016361837 cites W2082049658 @default.
- W2016361837 cites W2099449435 @default.
- W2016361837 cites W2100171046 @default.
- W2016361837 cites W2118216815 @default.
- W2016361837 cites W2146368895 @default.
- W2016361837 cites W2149257209 @default.
- W2016361837 cites W2156209176 @default.
- W2016361837 cites W2169082384 @default.
- W2016361837 cites W2283573682 @default.
- W2016361837 cites W2460270031 @default.
- W2016361837 cites W2488678869 @default.
- W2016361837 cites W2795713670 @default.
- W2016361837 cites W4232499084 @default.
- W2016361837 cites W4246835213 @default.
- W2016361837 cites W72582047 @default.
- W2016361837 doi "https://doi.org/10.1111/j.1467-9876.2005.05324.x" @default.
- W2016361837 hasPublicationYear "2005" @default.
- W2016361837 type Work @default.
- W2016361837 sameAs 2016361837 @default.
- W2016361837 citedByCount "54" @default.
- W2016361837 countsByYear W20163618372012 @default.
- W2016361837 countsByYear W20163618372013 @default.
- W2016361837 countsByYear W20163618372014 @default.
- W2016361837 countsByYear W20163618372015 @default.
- W2016361837 countsByYear W20163618372016 @default.
- W2016361837 countsByYear W20163618372017 @default.
- W2016361837 countsByYear W20163618372018 @default.
- W2016361837 countsByYear W20163618372019 @default.
- W2016361837 countsByYear W20163618372020 @default.
- W2016361837 countsByYear W20163618372021 @default.
- W2016361837 countsByYear W20163618372022 @default.
- W2016361837 crossrefType "journal-article" @default.
- W2016361837 hasAuthorship W2016361837A5035868878 @default.
- W2016361837 hasAuthorship W2016361837A5068843729 @default.
- W2016361837 hasConcept C100906024 @default.
- W2016361837 hasConcept C105795698 @default.
- W2016361837 hasConcept C144024400 @default.
- W2016361837 hasConcept C149923435 @default.
- W2016361837 hasConcept C185429906 @default.
- W2016361837 hasConcept C28826006 @default.
- W2016361837 hasConcept C2908647359 @default.
- W2016361837 hasConcept C33643355 @default.
- W2016361837 hasConcept C33923547 @default.
- W2016361837 hasConcept C73269764 @default.
- W2016361837 hasConcept C91025261 @default.
- W2016361837 hasConceptScore W2016361837C100906024 @default.
- W2016361837 hasConceptScore W2016361837C105795698 @default.
- W2016361837 hasConceptScore W2016361837C144024400 @default.
- W2016361837 hasConceptScore W2016361837C149923435 @default.
- W2016361837 hasConceptScore W2016361837C185429906 @default.
- W2016361837 hasConceptScore W2016361837C28826006 @default.
- W2016361837 hasConceptScore W2016361837C2908647359 @default.
- W2016361837 hasConceptScore W2016361837C33643355 @default.
- W2016361837 hasConceptScore W2016361837C33923547 @default.
- W2016361837 hasConceptScore W2016361837C73269764 @default.
- W2016361837 hasConceptScore W2016361837C91025261 @default.
- W2016361837 hasIssue "4" @default.
- W2016361837 hasLocation W20163618371 @default.
- W2016361837 hasOpenAccess W2016361837 @default.
- W2016361837 hasPrimaryLocation W20163618371 @default.
- W2016361837 hasRelatedWork W2116166733 @default.
- W2016361837 hasRelatedWork W2159796125 @default.
- W2016361837 hasRelatedWork W2971731486 @default.
- W2016361837 hasRelatedWork W3138681727 @default.
- W2016361837 hasRelatedWork W3186588872 @default.
- W2016361837 hasRelatedWork W3210390693 @default.
- W2016361837 hasRelatedWork W4210808373 @default.
- W2016361837 hasRelatedWork W4280505828 @default.
- W2016361837 hasRelatedWork W4292722743 @default.
- W2016361837 hasRelatedWork W94666533 @default.
- W2016361837 hasVolume "54" @default.
- W2016361837 isParatext "false" @default.
- W2016361837 isRetracted "false" @default.