Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016361990> ?p ?o ?g. }
- W2016361990 endingPage "2915" @default.
- W2016361990 startingPage "2906" @default.
- W2016361990 abstract "A wide range of classification methods have been used for the early detection of financial risks in recent years. How to select an adequate classifier (or set of classifiers) for a given dataset is an important task in financial risk prediction. Previous studies indicate that classifiers' performances in financial risk prediction may vary using different performance measures and under different circumstances. The main goal of this paper is to develop a two-step approach to evaluate classification algorithms for financial risk prediction. It constructs a performance score to measure the performance of classification algorithms and introduces three multiple criteria decision making (MCDM) methods (i.e., TOPSIS, PROMETHEE, and VIKOR) to provide a final ranking of classifiers. An empirical study is designed to assess various classification algorithms over seven real-life credit risk and fraud risk datasets from six countries. The results show that linear logistic, Bayesian Network, and ensemble methods are ranked as the top-three classifiers by TOPSIS, PROMETHEE, and VIKOR. In addition, this work discusses the construction of a knowledge-rich financial risk management process to increase the usefulness of classification results in financial risk detection." @default.
- W2016361990 created "2016-06-24" @default.
- W2016361990 creator A5009299938 @default.
- W2016361990 creator A5019041750 @default.
- W2016361990 creator A5039086738 @default.
- W2016361990 creator A5073973267 @default.
- W2016361990 date "2011-03-01" @default.
- W2016361990 modified "2023-09-25" @default.
- W2016361990 title "An empirical study of classification algorithm evaluation for financial risk prediction" @default.
- W2016361990 cites W1980770954 @default.
- W2016361990 cites W1982120517 @default.
- W2016361990 cites W1985624473 @default.
- W2016361990 cites W1987107395 @default.
- W2016361990 cites W1993224175 @default.
- W2016361990 cites W1996865068 @default.
- W2016361990 cites W2000295574 @default.
- W2016361990 cites W2001043894 @default.
- W2016361990 cites W2003341760 @default.
- W2016361990 cites W2004615188 @default.
- W2016361990 cites W2005510983 @default.
- W2016361990 cites W2010010720 @default.
- W2016361990 cites W2010811360 @default.
- W2016361990 cites W2011414287 @default.
- W2016361990 cites W2033626294 @default.
- W2016361990 cites W2036547589 @default.
- W2016361990 cites W2048905749 @default.
- W2016361990 cites W2051460183 @default.
- W2016361990 cites W2053790618 @default.
- W2016361990 cites W2064031858 @default.
- W2016361990 cites W2064322681 @default.
- W2016361990 cites W2065109455 @default.
- W2016361990 cites W2065530260 @default.
- W2016361990 cites W2076212276 @default.
- W2016361990 cites W2090425484 @default.
- W2016361990 cites W2092452692 @default.
- W2016361990 cites W2093829413 @default.
- W2016361990 cites W2097752063 @default.
- W2016361990 cites W2106393550 @default.
- W2016361990 cites W2110464191 @default.
- W2016361990 cites W2116825089 @default.
- W2016361990 cites W2117352691 @default.
- W2016361990 cites W2122379760 @default.
- W2016361990 cites W2125820445 @default.
- W2016361990 cites W2133990480 @default.
- W2016361990 cites W2140785063 @default.
- W2016361990 cites W2140853997 @default.
- W2016361990 cites W2143286545 @default.
- W2016361990 cites W2147680910 @default.
- W2016361990 cites W2147704565 @default.
- W2016361990 cites W2168123127 @default.
- W2016361990 cites W4235815488 @default.
- W2016361990 cites W4241034799 @default.
- W2016361990 cites W4242907277 @default.
- W2016361990 cites W4254466005 @default.
- W2016361990 doi "https://doi.org/10.1016/j.asoc.2010.11.028" @default.
- W2016361990 hasPublicationYear "2011" @default.
- W2016361990 type Work @default.
- W2016361990 sameAs 2016361990 @default.
- W2016361990 citedByCount "154" @default.
- W2016361990 countsByYear W20163619902012 @default.
- W2016361990 countsByYear W20163619902013 @default.
- W2016361990 countsByYear W20163619902014 @default.
- W2016361990 countsByYear W20163619902015 @default.
- W2016361990 countsByYear W20163619902016 @default.
- W2016361990 countsByYear W20163619902017 @default.
- W2016361990 countsByYear W20163619902018 @default.
- W2016361990 countsByYear W20163619902019 @default.
- W2016361990 countsByYear W20163619902020 @default.
- W2016361990 countsByYear W20163619902021 @default.
- W2016361990 countsByYear W20163619902022 @default.
- W2016361990 countsByYear W20163619902023 @default.
- W2016361990 crossrefType "journal-article" @default.
- W2016361990 hasAuthorship W2016361990A5009299938 @default.
- W2016361990 hasAuthorship W2016361990A5019041750 @default.
- W2016361990 hasAuthorship W2016361990A5039086738 @default.
- W2016361990 hasAuthorship W2016361990A5073973267 @default.
- W2016361990 hasConcept C10138342 @default.
- W2016361990 hasConcept C105795698 @default.
- W2016361990 hasConcept C11413529 @default.
- W2016361990 hasConcept C119857082 @default.
- W2016361990 hasConcept C120936955 @default.
- W2016361990 hasConcept C154945302 @default.
- W2016361990 hasConcept C162324750 @default.
- W2016361990 hasConcept C33923547 @default.
- W2016361990 hasConcept C41008148 @default.
- W2016361990 hasConcept C76073288 @default.
- W2016361990 hasConceptScore W2016361990C10138342 @default.
- W2016361990 hasConceptScore W2016361990C105795698 @default.
- W2016361990 hasConceptScore W2016361990C11413529 @default.
- W2016361990 hasConceptScore W2016361990C119857082 @default.
- W2016361990 hasConceptScore W2016361990C120936955 @default.
- W2016361990 hasConceptScore W2016361990C154945302 @default.
- W2016361990 hasConceptScore W2016361990C162324750 @default.
- W2016361990 hasConceptScore W2016361990C33923547 @default.
- W2016361990 hasConceptScore W2016361990C41008148 @default.
- W2016361990 hasConceptScore W2016361990C76073288 @default.
- W2016361990 hasIssue "2" @default.
- W2016361990 hasLocation W20163619901 @default.