Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016373345> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2016373345 endingPage "23" @default.
- W2016373345 startingPage "17" @default.
- W2016373345 abstract "No AccessJournal of UrologyClinical Urology: Original Articles1 Jan 1998HOLMIUM: YAG LITHOTRIPSY YIELDS SMALLER FRAGMENTS THAN LITHOCLAST, PULSED DYE LASER OR ELECTROHYDRAULIC LITHOTRIPSY Joel M.H. Teichman, George J. Vassar, Jay T. Bishoff, and Gary C. Bellman Joel M.H. TeichmanJoel M.H. Teichman More articles by this author , George J. VassarGeorge J. Vassar More articles by this author , Jay T. BishoffJay T. Bishoff More articles by this author , and Gary C. BellmanGary C. Bellman More articles by this author View All Author Informationhttps://doi.org/10.1016/S0022-5347(01)63998-3AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: The mechanism of lithotripsy differs among electrohydraulic lithotripsy, mechanical lithotripsy, pulsed dye lasers and holmium:YAG lithotripsy. It is postulated that fragment size from each of these lithotrites might also differ. This study tests the hypothesis that holmium:YAG lithotripsy yields the smallest among the lithotrites. Materials and Methods: We tested 3F electrohydraulic lithotripsy, 2 mm. mechanical lithotripsy, 320 micro m. pulsed dye lasers and 365 micro m. holmium:YAG fiber on stones composed of calcium hydrogen phosphate dihydrate, calcium oxalate monohydrate, cystine, magnesium ammonium phosphate and uric acid. Fragments were dessicated and sorted by size. Fragment size distribution was compared among lithotrites for each composition. Results: Holmium:YAG fragments were significantly smaller on average than fragments from the other lithotrites for all compositions. There were no holmium:YAG fragments greater than 4 mm., whereas there were for the other lithotrites. Holmium:YAG had significantly greater weight of fragments less than 1 mm. compared to the other lithotrites. Conclusions: Holmium:YAG yields smaller fragments compared to electrohydraulic lithotripsy, mechanical lithotripsy or pulsed dye lasers. These findings imply that fragments from holmium:YAG lithotripsy are more likely to pass without problem compared to the other lithotrites. Furthermore, the significant difference in fragment size adds evidence that holmium:YAG lithotripsy involves vaporization. References 1 : Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.. J. Endourol.1997; 11: 55. Google Scholar 2 : Intracorporeal lithotripsy: instrumentation and development.. Urol. Clin. N. Amer.1997; 24: 13. Google Scholar 3 : Fragmentation process of current laser lithotripters.. Lasers Surg. Med.1995; 16: 134. Google Scholar 4 : Transient cavitation and acoustic emission produced by different laser lithotripters.. J. Endourol.1996; 10: S132. Google Scholar 5 : Holmium:YAG cystolithotripsy of large bladder calculi.. Urology1997; 50: 44. Google Scholar 6 : Wavelength dependence of pulsed laser ablation of calcified tissue.. Lasers Surg. Med.1991; 11: 238. Google Scholar 7 : Effect of pulsed duration on bubble formation and laser-induced pressure waves during Holmium laser ablation.. Lasers Surg. Med.1996; 18: 278. Google Scholar 8 : Holmium:YAG induced damage to ureteral guidewires.. J. Endourol.1997; 11: 331. Google Scholar 9 : Ureteroscopic management of ureteral calculi: Holmium:YAG versus electrohydraulic lithotripsy.. J. Urol.1997; 158: 1357. Link, Google Scholar 10 : Electrohydraulic versus pneumatic disintegration in the treatment of ureteral stones: a randomized, prospective trial.. J. Urol.1995; 153: 623. Abstract, Google Scholar 11 : Clinical implications of clinically insignificant stone fragments after extracorporeal shock wave lithotripsy.. J. Urol.1996; 155: 1186. Abstract, Google Scholar 12 : Impact of shock wave pattern and cavitation bubble size on ureteroscopic electrohydraulic lithotripsy.. J. Urol.1995; 153: 849. Abstract, Google Scholar 13 : Experience with the Holmium laser as an endoscopic lithotrite.. Urology1996; 48: 199. Google Scholar 14 : Intracorporeal electrohydraulic lithotripsy of ureteral and renal calculi using small caliber (1.9F) electrohydraulic lithotripsy probes.. J. Urol.1996; 156: 1581. Abstract, Google Scholar 15 : Use of the Holmium laser in the upper urinary tract.. Tech. Urol.1995; 1: 25. Google Scholar 16 : Holmium:YAG laser resection of the prostate (HoLRP) versus transurethral electrocautery resection of the prostate (TURP): a prospective, randomized urodynamics-based clinical trial.. J. Urol.1997; 157: 40A. part 2, abstract 149. Google Scholar 17 : Lithotripsy of urinary calculi by tunable pulsed dye lasers: a randomized in vitro study.. J. Urol.1994; 151: 656. Abstract, Google Scholar 18 : In vitro comparison of two ballistic systems for endoscopic stone disintegration.. J. Endourol.1996; 10: 417. Google Scholar 19 : Lithoclast and Lithoclast Master-an experimental and clinical comparison. J. Urol.1997; 157: 163A. part 2, abstract 630. Google Scholar From The Division of Urology, University of Texas Science Center, San Antonio and Wilford Hall Medical Center, Lackland Air Force Base, Texas, and Southern California Permanente Medical Group, Los Angeles, CaliforniaAccepted for publication July 18, 1997The opinions expressed herein are those of the authors and do not necessarily reflect those of United States Air Force or Department of Defense(Teichman) Requests for reprints: Division of Urology, UTHSCSA, 7703 Floyd Curl Dr., San Antonio, Texas 78284-7845© 1998 by American Urological Association, Inc.FiguresReferencesRelatedDetailsCited bySea J, Jonat L, Chew B, Qiu J, Wang B, Hoopman J, Milner T and Teichman J (2018) Optimal Power Settings for Holmium:YAG LithotripsyJournal of Urology, VOL. 187, NO. 3, (914-919), Online publication date: 1-Mar-2012.Schatloff O, Lindner U, Ramon J and Winkler H (2018) Randomized Trial of Stone Fragment Active Retrieval Versus Spontaneous Passage During Holmium Laser Lithotripsy for Ureteral StonesJournal of Urology, VOL. 183, NO. 3, (1031-1036), Online publication date: 1-Mar-2010.Mues A, Teichman J and Knudsen B (2018) Evaluation of 24 Holmium:YAG Laser Optical Fibers for Flexible UreteroscopyJournal of Urology, VOL. 182, NO. 1, (348-354), Online publication date: 1-Jul-2009.Mariani A (2018) Combined Electrohydraulic and Holmium:YAG Laser Ureteroscopic Nephrolithotripsy of Large (Greater Than 4 cm) Renal CalculiJournal of Urology, VOL. 177, NO. 1, (168-173), Online publication date: 1-Jan-2007.Preminger G, Tiselius H, Assimos D, Alken P, Buck C, Gallucci M, Knoll T, Lingeman J, Nakada S, Pearle M, Sarica K, Türk C and Wolf J (2018) 2007 Guideline for the Management of Ureteral CalculiJournal of Urology, VOL. 178, NO. 6, (2418-2434), Online publication date: 1-Dec-2007.MARIANI A (2018) COMBINED ELECTROHYDRAULIC AND HOLMIUM:YAG LASER URETEROSCOPIC NEPHROLITHOTRIPSY FOR 20 TO 40 MM RENAL CALCULIJournal of Urology, VOL. 172, NO. 1, (170-174), Online publication date: 1-Jul-2004.WU C, SHEE J, LIN W, LIN C and CHEN C (2018) COMPARISON BETWEEN EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY AND SEMIRIGID URETERORENOSCOPE WITH HOLMIUM: YAG LASER LITHOTRIPSY FOR TREATING LARGE PROXIMAL URETERAL STONESJournal of Urology, VOL. 172, NO. 5, (1899-1902), Online publication date: 1-Nov-2004.SOFER M, WATTERSON J, WOLLIN T, NOTT L, RAZVI H and DENSTEDT J (2018) HOLMIUM: YAG LASER LITHOTRIPSY FOR UPPER URINARY TRACT CALCULI IN 598 PATIENTSJournal of Urology, VOL. 167, NO. 1, (31-34), Online publication date: 1-Jan-2002.DENSTEDT J, WOLLIN T, SOFER M, NOTT L, WEIR M and D’A. HONEY R (2018) A PROSPECTIVE RANDOMIZED CONTROLLED TRIAL COMPARING NONSTENTED VERSUS STENTED URETEROSCOPIC LITHOTRIPSYJournal of Urology, VOL. 165, NO. 5, (1419-1422), Online publication date: 1-May-2001.Teichman J, Chan K, Cecconi P, Corbin N, Kamerer A, Glickman R and Welch A (2018) ERBIUM:YAG VERSUS HOLMIUM:YAG LITHOTRIPSYJournal of Urology, VOL. 165, NO. 3, (876-879), Online publication date: 1-Mar-2001.PRABAKHARAN S, TEICHMAN J, SPORE S, SABANEGH E, GLICKMAN R and McLEAN R (2018) PROTEUS MIRABILIS VIABILITY AFTER LITHOTRIPSY OF STRUVITE CALCULIJournal of Urology, VOL. 162, NO. 5, (1666-1669), Online publication date: 1-Nov-1999.REDDY P, BARRIERAS D, BÄGLI D, McLORIE G, KHOURY A and MERGUERIAN P (2018) INITIAL EXPERIENCE WITH ENDOSCOPIC HOLMIUM LASER LITHOTRIPSY FOR PEDIATRIC UROLITHIASISJournal of Urology, VOL. 162, NO. 5, (1714-1716), Online publication date: 1-Nov-1999.WOLLIN T, TEICHMAN J, ROGENES V, RAZVI H, DENSTEDT J and GRASSO M (2018) HOLMIUM: YAG LITHOTRIPSY IN CHILDRENJournal of Urology, VOL. 162, NO. 5, (1717-1720), Online publication date: 1-Nov-1999.TEICHMAN J, VASSAR G, GLICKMAN R, BESERRA C, CINA S and THOMPSON I (2018) HOLMIUM: YAG LITHOTRIPSY: PHOTOTHERMAL MECHANISM CONVERTS URIC ACID CALCULI TO CYANIDEJournal of Urology, VOL. 160, NO. 2, (320-324), Online publication date: 1-Aug-1998.TEICHMAN J, CHAMPION P, WOLLIN T and DENSTEDT J (2018) HOLMIUM: YAG LITHOTRIPSY OF URIC ACID CALCULIJournal of Urology, VOL. 160, NO. 6 Part 1, (2130-2132), Online publication date: 1-Dec-1998.TEICHMAN J, RAO R, GLICKMAN R and HARRIS J (2018) HOLMIUM: YAG PERCUTANEOUS NEPHROLITHOTOMY: THE LASER INCIDENT ANGLE MATTERSJournal of Urology, VOL. 159, NO. 3, (690-694), Online publication date: 1-Mar-1998. Volume 159Issue 1January 1998Page: 17-23 Advertisement Copyright & Permissions© 1998 by American Urological Association, Inc.MetricsAuthor Information Joel M.H. Teichman More articles by this author George J. Vassar More articles by this author Jay T. Bishoff More articles by this author Gary C. Bellman More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2016373345 created "2016-06-24" @default.
- W2016373345 creator A5008056970 @default.
- W2016373345 creator A5009435754 @default.
- W2016373345 creator A5086848208 @default.
- W2016373345 creator A5089250322 @default.
- W2016373345 date "1998-01-01" @default.
- W2016373345 modified "2023-10-16" @default.
- W2016373345 title "HOLMIUM: YAG LITHOTRIPSY YIELDS SMALLER FRAGMENTS THAN LITHOCLAST, PULSED DYE LASER OR ELECTROHYDRAULIC LITHOTRIPSY" @default.
- W2016373345 cites W1970683066 @default.
- W2016373345 cites W1975312197 @default.
- W2016373345 cites W1979784336 @default.
- W2016373345 cites W2002216979 @default.
- W2016373345 cites W2015931298 @default.
- W2016373345 cites W203630690 @default.
- W2016373345 cites W2047677516 @default.
- W2016373345 cites W2060787142 @default.
- W2016373345 cites W2063665524 @default.
- W2016373345 cites W2072534382 @default.
- W2016373345 cites W2126490704 @default.
- W2016373345 cites W2405033868 @default.
- W2016373345 cites W4301820290 @default.
- W2016373345 cites W4317926517 @default.
- W2016373345 cites W4321429324 @default.
- W2016373345 doi "https://doi.org/10.1016/s0022-5347(01)63998-3" @default.
- W2016373345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9400428" @default.
- W2016373345 hasPublicationYear "1998" @default.
- W2016373345 type Work @default.
- W2016373345 sameAs 2016373345 @default.
- W2016373345 citedByCount "233" @default.
- W2016373345 countsByYear W20163733452012 @default.
- W2016373345 countsByYear W20163733452013 @default.
- W2016373345 countsByYear W20163733452014 @default.
- W2016373345 countsByYear W20163733452015 @default.
- W2016373345 countsByYear W20163733452016 @default.
- W2016373345 countsByYear W20163733452017 @default.
- W2016373345 countsByYear W20163733452018 @default.
- W2016373345 countsByYear W20163733452019 @default.
- W2016373345 countsByYear W20163733452020 @default.
- W2016373345 countsByYear W20163733452021 @default.
- W2016373345 countsByYear W20163733452022 @default.
- W2016373345 countsByYear W20163733452023 @default.
- W2016373345 crossrefType "journal-article" @default.
- W2016373345 hasAuthorship W2016373345A5008056970 @default.
- W2016373345 hasAuthorship W2016373345A5009435754 @default.
- W2016373345 hasAuthorship W2016373345A5086848208 @default.
- W2016373345 hasAuthorship W2016373345A5089250322 @default.
- W2016373345 hasBestOaLocation W20163733452 @default.
- W2016373345 hasConcept C120665830 @default.
- W2016373345 hasConcept C121332964 @default.
- W2016373345 hasConcept C141071460 @default.
- W2016373345 hasConcept C2777950166 @default.
- W2016373345 hasConcept C2781117068 @default.
- W2016373345 hasConcept C520434653 @default.
- W2016373345 hasConcept C540056406 @default.
- W2016373345 hasConcept C71924100 @default.
- W2016373345 hasConceptScore W2016373345C120665830 @default.
- W2016373345 hasConceptScore W2016373345C121332964 @default.
- W2016373345 hasConceptScore W2016373345C141071460 @default.
- W2016373345 hasConceptScore W2016373345C2777950166 @default.
- W2016373345 hasConceptScore W2016373345C2781117068 @default.
- W2016373345 hasConceptScore W2016373345C520434653 @default.
- W2016373345 hasConceptScore W2016373345C540056406 @default.
- W2016373345 hasConceptScore W2016373345C71924100 @default.
- W2016373345 hasIssue "1" @default.
- W2016373345 hasLocation W20163733451 @default.
- W2016373345 hasLocation W20163733452 @default.
- W2016373345 hasLocation W20163733453 @default.
- W2016373345 hasOpenAccess W2016373345 @default.
- W2016373345 hasPrimaryLocation W20163733451 @default.
- W2016373345 hasRelatedWork W1981084972 @default.
- W2016373345 hasRelatedWork W2076950309 @default.
- W2016373345 hasRelatedWork W2091809042 @default.
- W2016373345 hasRelatedWork W2360424380 @default.
- W2016373345 hasRelatedWork W3000917338 @default.
- W2016373345 hasRelatedWork W4229369383 @default.
- W2016373345 hasRelatedWork W4241024807 @default.
- W2016373345 hasRelatedWork W4312304351 @default.
- W2016373345 hasRelatedWork W4313328580 @default.
- W2016373345 hasRelatedWork W4381850173 @default.
- W2016373345 hasVolume "159" @default.
- W2016373345 isParatext "false" @default.
- W2016373345 isRetracted "false" @default.
- W2016373345 magId "2016373345" @default.
- W2016373345 workType "article" @default.