Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016384789> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2016384789 endingPage "2424" @default.
- W2016384789 startingPage "2409" @default.
- W2016384789 abstract "We set two objectives for this study: one is to emulate chaotic natural populations in GA (Genetic Algorithms) populations by utilizing the Logistic Chaos map model, and the other is to analyze the population fitness distribution by utilizing insect spatial distribution theory. Natural populations are so dynamic that one of the first experimental evidences of Chaos in nature was discovered by a theoretical ecologist, May (1976, Nature, 261,459–467)[30], in his analysis of insect population dynamics. In evolutionary computing, perhaps influenced by the stable or infinite population concepts in population genetics, the status quo of population settings has dominantly been the fixed-size populations. In this paper, we propose to introduce dynamic populations controlled by the Logistic Chaos map model to Genetic Algorithms (GA), and test the hypothesis – whether or not the dynamic populations that emulate chaotic populations in nature will have an advantage over traditional fixed-size populations. The Logistic Chaos map model, arguably the simplest nonlinear dynamics model, has surprisingly rich dynamic behaviors, ranging from exponential, sigmoid growth, periodic oscillations, and aperiodic oscillations, to complete Chaos. What is even more favorable is that, unlike many other population dynamics models, this model can be expressed as a single parameter recursion equation, which makes it very convenient to control the dynamic behaviors and therefore easy to apply to evolutionary computing. The experiments show result values in terms of the fitness evaluations and memory storage requirements. We further conjecture that Chaos may be helpful in breaking neutral space in the fitness landscape, similar to the argument in ecology that Chaos may help the exploration and/or exploitation of environment heterogeneity and therefore enhance a species’ survival or fitness." @default.
- W2016384789 created "2016-06-24" @default.
- W2016384789 creator A5037021459 @default.
- W2016384789 date "2012-08-01" @default.
- W2016384789 modified "2023-10-17" @default.
- W2016384789 title "Chaotic populations in genetic algorithms" @default.
- W2016384789 cites W1976029701 @default.
- W2016384789 cites W1978328453 @default.
- W2016384789 cites W1989338016 @default.
- W2016384789 cites W2013087675 @default.
- W2016384789 cites W2015776402 @default.
- W2016384789 cites W2044815661 @default.
- W2016384789 cites W2059460735 @default.
- W2016384789 cites W2090769784 @default.
- W2016384789 cites W2102892532 @default.
- W2016384789 cites W2103071553 @default.
- W2016384789 cites W2117473144 @default.
- W2016384789 cites W2124180027 @default.
- W2016384789 cites W2136827689 @default.
- W2016384789 cites W2138135326 @default.
- W2016384789 cites W2146300243 @default.
- W2016384789 cites W4247061942 @default.
- W2016384789 doi "https://doi.org/10.1016/j.asoc.2012.03.001" @default.
- W2016384789 hasPublicationYear "2012" @default.
- W2016384789 type Work @default.
- W2016384789 sameAs 2016384789 @default.
- W2016384789 citedByCount "45" @default.
- W2016384789 countsByYear W20163847892012 @default.
- W2016384789 countsByYear W20163847892014 @default.
- W2016384789 countsByYear W20163847892015 @default.
- W2016384789 countsByYear W20163847892016 @default.
- W2016384789 countsByYear W20163847892017 @default.
- W2016384789 countsByYear W20163847892018 @default.
- W2016384789 countsByYear W20163847892019 @default.
- W2016384789 countsByYear W20163847892020 @default.
- W2016384789 countsByYear W20163847892021 @default.
- W2016384789 countsByYear W20163847892022 @default.
- W2016384789 countsByYear W20163847892023 @default.
- W2016384789 crossrefType "journal-article" @default.
- W2016384789 hasAuthorship W2016384789A5037021459 @default.
- W2016384789 hasConcept C11413529 @default.
- W2016384789 hasConcept C144024400 @default.
- W2016384789 hasConcept C149923435 @default.
- W2016384789 hasConcept C154945302 @default.
- W2016384789 hasConcept C168773036 @default.
- W2016384789 hasConcept C205330730 @default.
- W2016384789 hasConcept C2777052490 @default.
- W2016384789 hasConcept C2908647359 @default.
- W2016384789 hasConcept C33923547 @default.
- W2016384789 hasConcept C41008148 @default.
- W2016384789 hasConcept C91852762 @default.
- W2016384789 hasConceptScore W2016384789C11413529 @default.
- W2016384789 hasConceptScore W2016384789C144024400 @default.
- W2016384789 hasConceptScore W2016384789C149923435 @default.
- W2016384789 hasConceptScore W2016384789C154945302 @default.
- W2016384789 hasConceptScore W2016384789C168773036 @default.
- W2016384789 hasConceptScore W2016384789C205330730 @default.
- W2016384789 hasConceptScore W2016384789C2777052490 @default.
- W2016384789 hasConceptScore W2016384789C2908647359 @default.
- W2016384789 hasConceptScore W2016384789C33923547 @default.
- W2016384789 hasConceptScore W2016384789C41008148 @default.
- W2016384789 hasConceptScore W2016384789C91852762 @default.
- W2016384789 hasIssue "8" @default.
- W2016384789 hasLocation W20163847891 @default.
- W2016384789 hasOpenAccess W2016384789 @default.
- W2016384789 hasPrimaryLocation W20163847891 @default.
- W2016384789 hasRelatedWork W1567811277 @default.
- W2016384789 hasRelatedWork W2018914863 @default.
- W2016384789 hasRelatedWork W2388148802 @default.
- W2016384789 hasRelatedWork W2392702397 @default.
- W2016384789 hasRelatedWork W2393525792 @default.
- W2016384789 hasRelatedWork W2395245195 @default.
- W2016384789 hasRelatedWork W2994758972 @default.
- W2016384789 hasRelatedWork W4223591601 @default.
- W2016384789 hasRelatedWork W4293069777 @default.
- W2016384789 hasRelatedWork W2120268333 @default.
- W2016384789 hasVolume "12" @default.
- W2016384789 isParatext "false" @default.
- W2016384789 isRetracted "false" @default.
- W2016384789 magId "2016384789" @default.
- W2016384789 workType "article" @default.