Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016386918> ?p ?o ?g. }
- W2016386918 endingPage "2150" @default.
- W2016386918 startingPage "2137" @default.
- W2016386918 abstract "Cholesterol trafficking, which is an essential function in mammalian cells, is intimately connected to molecular-scale interactions through cholesterol modulation of membrane structure and dynamics and interaction with membrane receptors. Since these effects of cholesterol occur on micro- to millisecond time scales, it is essential to develop accurate coarse-grained simulation models that can reach these time scales. Cholesterol has been shown experimentally to thicken the membrane and increase phospholipid tail order between 0 and 40% cholesterol, above which these effects plateau or slightly decrease. Here, we showed that the published MARTINI coarse-grained force-field for phospholipid (POPC) and cholesterol fails to capture these effects. Using reference atomistic simulations, we systematically modified POPC and cholesterol bonded parameters in MARTINI to improve its performance. We showed that the corrections to pseudobond angles between glycerol and the lipid tails and around the oleoyl double bond particle (the “angle-corrected model”) slightly improves the agreement of MARTINI with experimentally measured thermal, elastic, and dynamic properties of POPC membranes. The angle-corrected model improves prediction of the thickening and ordering effects up to 40% cholesterol but overestimates these effects at higher cholesterol concentration. In accordance with prior work that showed the cholesterol rough face methyl groups are important for limiting cholesterol self-association, we revised the coarse-grained representation of these methyl groups to better match cholesterol-cholesterol radial distribution functions from atomistic simulations. In addition, by using a finer-grained representation of the branched cholesterol tail than MARTINI, we improved predictions of lipid tail order and bilayer thickness across a wide range of concentrations. Finally, transferability testing shows that a model incorporating our revised parameters into DOPC outperforms other CG models in a DOPC/cholesterol simulation series, which further argues for its efficacy and generalizability. These results argue for the importance of systematic optimization for coarse-graining biologically important molecules like cholesterol with complicated molecular structure." @default.
- W2016386918 created "2016-06-24" @default.
- W2016386918 creator A5056034482 @default.
- W2016386918 creator A5060731094 @default.
- W2016386918 creator A5071301834 @default.
- W2016386918 creator A5076984889 @default.
- W2016386918 creator A5083145033 @default.
- W2016386918 date "2014-04-14" @default.
- W2016386918 modified "2023-09-29" @default.
- W2016386918 title "Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers" @default.
- W2016386918 cites W1966078827 @default.
- W2016386918 cites W1970309030 @default.
- W2016386918 cites W1973728337 @default.
- W2016386918 cites W1976342064 @default.
- W2016386918 cites W1988597220 @default.
- W2016386918 cites W1990550372 @default.
- W2016386918 cites W1997170317 @default.
- W2016386918 cites W1999077168 @default.
- W2016386918 cites W1999906821 @default.
- W2016386918 cites W2004541657 @default.
- W2016386918 cites W2006369258 @default.
- W2016386918 cites W2007616467 @default.
- W2016386918 cites W2010265988 @default.
- W2016386918 cites W2020064424 @default.
- W2016386918 cites W2022714443 @default.
- W2016386918 cites W2023479427 @default.
- W2016386918 cites W2024134244 @default.
- W2016386918 cites W2024704649 @default.
- W2016386918 cites W2035266068 @default.
- W2016386918 cites W2036735222 @default.
- W2016386918 cites W2040562404 @default.
- W2016386918 cites W2042834223 @default.
- W2016386918 cites W2043568015 @default.
- W2016386918 cites W2048623371 @default.
- W2016386918 cites W2049286183 @default.
- W2016386918 cites W2049294465 @default.
- W2016386918 cites W2051864856 @default.
- W2016386918 cites W2052744592 @default.
- W2016386918 cites W2053946842 @default.
- W2016386918 cites W2055772691 @default.
- W2016386918 cites W2058107268 @default.
- W2016386918 cites W2059571424 @default.
- W2016386918 cites W2066414494 @default.
- W2016386918 cites W2067129147 @default.
- W2016386918 cites W2071251525 @default.
- W2016386918 cites W2071475257 @default.
- W2016386918 cites W2072069399 @default.
- W2016386918 cites W2074551088 @default.
- W2016386918 cites W2075826312 @default.
- W2016386918 cites W2077455410 @default.
- W2016386918 cites W2077817323 @default.
- W2016386918 cites W2079310941 @default.
- W2016386918 cites W2080263214 @default.
- W2016386918 cites W2081260116 @default.
- W2016386918 cites W2081693079 @default.
- W2016386918 cites W2082907536 @default.
- W2016386918 cites W2085171353 @default.
- W2016386918 cites W2092880628 @default.
- W2016386918 cites W2095613974 @default.
- W2016386918 cites W2102399834 @default.
- W2016386918 cites W2110855516 @default.
- W2016386918 cites W2113937251 @default.
- W2016386918 cites W2114180654 @default.
- W2016386918 cites W2115040835 @default.
- W2016386918 cites W2119267663 @default.
- W2016386918 cites W2119806687 @default.
- W2016386918 cites W2119882112 @default.
- W2016386918 cites W2121521640 @default.
- W2016386918 cites W2121936687 @default.
- W2016386918 cites W2122882997 @default.
- W2016386918 cites W2133804144 @default.
- W2016386918 cites W2136890404 @default.
- W2016386918 cites W2142083551 @default.
- W2016386918 cites W2142532813 @default.
- W2016386918 cites W2147692698 @default.
- W2016386918 cites W2150785142 @default.
- W2016386918 cites W2156407219 @default.
- W2016386918 cites W2156835500 @default.
- W2016386918 cites W2158148873 @default.
- W2016386918 cites W2162907973 @default.
- W2016386918 cites W2164233810 @default.
- W2016386918 cites W2167389261 @default.
- W2016386918 cites W2487854154 @default.
- W2016386918 doi "https://doi.org/10.1021/ct401028g" @default.
- W2016386918 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4044725" @default.
- W2016386918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24910542" @default.
- W2016386918 hasPublicationYear "2014" @default.
- W2016386918 type Work @default.
- W2016386918 sameAs 2016386918 @default.
- W2016386918 citedByCount "39" @default.
- W2016386918 countsByYear W20163869182014 @default.
- W2016386918 countsByYear W20163869182015 @default.
- W2016386918 countsByYear W20163869182016 @default.
- W2016386918 countsByYear W20163869182017 @default.
- W2016386918 countsByYear W20163869182018 @default.
- W2016386918 countsByYear W20163869182019 @default.
- W2016386918 countsByYear W20163869182020 @default.
- W2016386918 countsByYear W20163869182021 @default.