Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016389969> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2016389969 abstract "Many types of recommender systems rely on a rich ensemble of user, item, and context features when generating recommendations for users. The features can be either manually engineered or automatically extracted from the available data, such that feature engineering becomes an important step in the recommendation process. In this work, we propose to leverage graph based representation of the data in order to generate and automatically populate features. We represent the standard user-item rating matrix and some domain metadata, as graph vertices and edges. Then, we apply a suite of graph theory and network analysis metrics to the graph based data representation, to populate features that augment the original user-item ratings data. The augmented data is fed into a classifier that predicts unknown user ratings, which are used for the generation of recommendations. We evaluate the proposed methodology using the recently released Yelp business ratings dataset. Our results indicate that the automatically populated graph features allow for more accurate and robust predictions, with respect to both the variability and sparsity of ratings." @default.
- W2016389969 created "2016-06-24" @default.
- W2016389969 creator A5040251515 @default.
- W2016389969 creator A5047191996 @default.
- W2016389969 creator A5069182204 @default.
- W2016389969 creator A5075613231 @default.
- W2016389969 creator A5082219837 @default.
- W2016389969 creator A5083922073 @default.
- W2016389969 date "2014-02-24" @default.
- W2016389969 modified "2023-10-07" @default.
- W2016389969 title "Improving business rating predictions using graph based features" @default.
- W2016389969 cites W1577943759 @default.
- W2016389969 cites W1967784045 @default.
- W2016389969 cites W1967812664 @default.
- W2016389969 cites W1980576395 @default.
- W2016389969 cites W204615560 @default.
- W2016389969 cites W2054141820 @default.
- W2016389969 cites W2080046063 @default.
- W2016389969 cites W2081960165 @default.
- W2016389969 cites W2103018059 @default.
- W2016389969 cites W2108630796 @default.
- W2016389969 cites W2111275322 @default.
- W2016389969 cites W2123753389 @default.
- W2016389969 cites W2124756613 @default.
- W2016389969 cites W2147654806 @default.
- W2016389969 cites W2149055390 @default.
- W2016389969 cites W2171804848 @default.
- W2016389969 cites W2911964244 @default.
- W2016389969 cites W4245605774 @default.
- W2016389969 doi "https://doi.org/10.1145/2557500.2557526" @default.
- W2016389969 hasPublicationYear "2014" @default.
- W2016389969 type Work @default.
- W2016389969 sameAs 2016389969 @default.
- W2016389969 citedByCount "14" @default.
- W2016389969 countsByYear W20163899692014 @default.
- W2016389969 countsByYear W20163899692015 @default.
- W2016389969 countsByYear W20163899692016 @default.
- W2016389969 countsByYear W20163899692017 @default.
- W2016389969 countsByYear W20163899692019 @default.
- W2016389969 countsByYear W20163899692020 @default.
- W2016389969 countsByYear W20163899692021 @default.
- W2016389969 crossrefType "proceedings-article" @default.
- W2016389969 hasAuthorship W2016389969A5040251515 @default.
- W2016389969 hasAuthorship W2016389969A5047191996 @default.
- W2016389969 hasAuthorship W2016389969A5069182204 @default.
- W2016389969 hasAuthorship W2016389969A5075613231 @default.
- W2016389969 hasAuthorship W2016389969A5082219837 @default.
- W2016389969 hasAuthorship W2016389969A5083922073 @default.
- W2016389969 hasConcept C119857082 @default.
- W2016389969 hasConcept C124101348 @default.
- W2016389969 hasConcept C132525143 @default.
- W2016389969 hasConcept C136764020 @default.
- W2016389969 hasConcept C153083717 @default.
- W2016389969 hasConcept C154945302 @default.
- W2016389969 hasConcept C23123220 @default.
- W2016389969 hasConcept C41008148 @default.
- W2016389969 hasConcept C557471498 @default.
- W2016389969 hasConcept C80444323 @default.
- W2016389969 hasConcept C93518851 @default.
- W2016389969 hasConceptScore W2016389969C119857082 @default.
- W2016389969 hasConceptScore W2016389969C124101348 @default.
- W2016389969 hasConceptScore W2016389969C132525143 @default.
- W2016389969 hasConceptScore W2016389969C136764020 @default.
- W2016389969 hasConceptScore W2016389969C153083717 @default.
- W2016389969 hasConceptScore W2016389969C154945302 @default.
- W2016389969 hasConceptScore W2016389969C23123220 @default.
- W2016389969 hasConceptScore W2016389969C41008148 @default.
- W2016389969 hasConceptScore W2016389969C557471498 @default.
- W2016389969 hasConceptScore W2016389969C80444323 @default.
- W2016389969 hasConceptScore W2016389969C93518851 @default.
- W2016389969 hasLocation W20163899691 @default.
- W2016389969 hasOpenAccess W2016389969 @default.
- W2016389969 hasPrimaryLocation W20163899691 @default.
- W2016389969 hasRelatedWork W2058118494 @default.
- W2016389969 hasRelatedWork W2095118173 @default.
- W2016389969 hasRelatedWork W2106424170 @default.
- W2016389969 hasRelatedWork W2134629545 @default.
- W2016389969 hasRelatedWork W2382021449 @default.
- W2016389969 hasRelatedWork W2392768766 @default.
- W2016389969 hasRelatedWork W2501188010 @default.
- W2016389969 hasRelatedWork W2768810474 @default.
- W2016389969 hasRelatedWork W4299935056 @default.
- W2016389969 hasRelatedWork W848359858 @default.
- W2016389969 isParatext "false" @default.
- W2016389969 isRetracted "false" @default.
- W2016389969 magId "2016389969" @default.
- W2016389969 workType "article" @default.