Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016391060> ?p ?o ?g. }
- W2016391060 endingPage "1192" @default.
- W2016391060 startingPage "1181" @default.
- W2016391060 abstract "The literature reports many scientific works on the use of artificial intelligence techniques such as neural networks or fuzzy logic to predict surface roughness. This article aims at introducing Bayesian network-based classifiers to predict surface roughness (Ra) in high-speed machining. These models are appropriate as prediction techniques because the non-linearity of the machining process demands robust and reliable algorithms to deal with all the invisible trends present when a work piece is machining. The experimental test obtained from a high-speed milling contouring process analysed the indicator of goodness using the Naïve Bayes and the Tree-Augmented Network algorithms. Up to 81.2% accuracy was achieved in the Ra classification results. Therefore, we envisage that Bayesian network-based classifiers may become a powerful and flexible tool in high-speed machining." @default.
- W2016391060 created "2016-06-24" @default.
- W2016391060 creator A5010920098 @default.
- W2016391060 creator A5018477281 @default.
- W2016391060 creator A5035348815 @default.
- W2016391060 creator A5069041202 @default.
- W2016391060 date "2008-12-01" @default.
- W2016391060 modified "2023-10-16" @default.
- W2016391060 title "A Bayesian network model for surface roughness prediction in the machining process" @default.
- W2016391060 cites W1604033047 @default.
- W2016391060 cites W1817561967 @default.
- W2016391060 cites W1981292027 @default.
- W2016391060 cites W1989557966 @default.
- W2016391060 cites W2019822144 @default.
- W2016391060 cites W2026167568 @default.
- W2016391060 cites W2032026767 @default.
- W2016391060 cites W2045031658 @default.
- W2016391060 cites W2047941043 @default.
- W2016391060 cites W2057115534 @default.
- W2016391060 cites W2066735789 @default.
- W2016391060 cites W2079201715 @default.
- W2016391060 cites W2082073455 @default.
- W2016391060 cites W2117812871 @default.
- W2016391060 cites W2140785063 @default.
- W2016391060 cites W2160483056 @default.
- W2016391060 cites W2161369142 @default.
- W2016391060 cites W2163166770 @default.
- W2016391060 cites W62281807 @default.
- W2016391060 doi "https://doi.org/10.1080/00207720802344683" @default.
- W2016391060 hasPublicationYear "2008" @default.
- W2016391060 type Work @default.
- W2016391060 sameAs 2016391060 @default.
- W2016391060 citedByCount "43" @default.
- W2016391060 countsByYear W20163910602012 @default.
- W2016391060 countsByYear W20163910602013 @default.
- W2016391060 countsByYear W20163910602014 @default.
- W2016391060 countsByYear W20163910602015 @default.
- W2016391060 countsByYear W20163910602016 @default.
- W2016391060 countsByYear W20163910602017 @default.
- W2016391060 countsByYear W20163910602018 @default.
- W2016391060 countsByYear W20163910602019 @default.
- W2016391060 countsByYear W20163910602020 @default.
- W2016391060 countsByYear W20163910602021 @default.
- W2016391060 countsByYear W20163910602022 @default.
- W2016391060 countsByYear W20163910602023 @default.
- W2016391060 crossrefType "journal-article" @default.
- W2016391060 hasAuthorship W2016391060A5010920098 @default.
- W2016391060 hasAuthorship W2016391060A5018477281 @default.
- W2016391060 hasAuthorship W2016391060A5035348815 @default.
- W2016391060 hasAuthorship W2016391060A5069041202 @default.
- W2016391060 hasConcept C107365816 @default.
- W2016391060 hasConcept C111919701 @default.
- W2016391060 hasConcept C119857082 @default.
- W2016391060 hasConcept C12267149 @default.
- W2016391060 hasConcept C127413603 @default.
- W2016391060 hasConcept C154945302 @default.
- W2016391060 hasConcept C159985019 @default.
- W2016391060 hasConcept C192562407 @default.
- W2016391060 hasConcept C33724603 @default.
- W2016391060 hasConcept C41008148 @default.
- W2016391060 hasConcept C50644808 @default.
- W2016391060 hasConcept C52001869 @default.
- W2016391060 hasConcept C523214423 @default.
- W2016391060 hasConcept C78519656 @default.
- W2016391060 hasConcept C98045186 @default.
- W2016391060 hasConceptScore W2016391060C107365816 @default.
- W2016391060 hasConceptScore W2016391060C111919701 @default.
- W2016391060 hasConceptScore W2016391060C119857082 @default.
- W2016391060 hasConceptScore W2016391060C12267149 @default.
- W2016391060 hasConceptScore W2016391060C127413603 @default.
- W2016391060 hasConceptScore W2016391060C154945302 @default.
- W2016391060 hasConceptScore W2016391060C159985019 @default.
- W2016391060 hasConceptScore W2016391060C192562407 @default.
- W2016391060 hasConceptScore W2016391060C33724603 @default.
- W2016391060 hasConceptScore W2016391060C41008148 @default.
- W2016391060 hasConceptScore W2016391060C50644808 @default.
- W2016391060 hasConceptScore W2016391060C52001869 @default.
- W2016391060 hasConceptScore W2016391060C523214423 @default.
- W2016391060 hasConceptScore W2016391060C78519656 @default.
- W2016391060 hasConceptScore W2016391060C98045186 @default.
- W2016391060 hasIssue "12" @default.
- W2016391060 hasLocation W20163910601 @default.
- W2016391060 hasOpenAccess W2016391060 @default.
- W2016391060 hasPrimaryLocation W20163910601 @default.
- W2016391060 hasRelatedWork W1470425429 @default.
- W2016391060 hasRelatedWork W1553274644 @default.
- W2016391060 hasRelatedWork W2023818620 @default.
- W2016391060 hasRelatedWork W2364121375 @default.
- W2016391060 hasRelatedWork W2368919149 @default.
- W2016391060 hasRelatedWork W3014815208 @default.
- W2016391060 hasRelatedWork W3038053604 @default.
- W2016391060 hasRelatedWork W3107602296 @default.
- W2016391060 hasRelatedWork W4205958290 @default.
- W2016391060 hasRelatedWork W795948579 @default.
- W2016391060 hasVolume "39" @default.
- W2016391060 isParatext "false" @default.
- W2016391060 isRetracted "false" @default.
- W2016391060 magId "2016391060" @default.