Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016406377> ?p ?o ?g. }
- W2016406377 endingPage "180" @default.
- W2016406377 startingPage "161" @default.
- W2016406377 abstract "Researchers are aware of certain types of problems that arise when modelling interconnections between general circulation and regional processes, such as prediction of regional, local-scale climate variables from large-scale processes, e.g. by means of general circulation model (GCM) outputs. The problem solution is called downscaling. In this paper, a statistical downscaling approach to monthly total precipitation over Turkey, which is an integral part of system identification for analysis of local-scale climate variables, is investigated. Based on perfect prognosis, a new computationally effective working method is introduced by the proper predictors selected from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data sets, which are simulated as perfectly as possible by GCMs during the period of 1961–98. The Sampson correlation ratio is used to determine the relationships between the monthly total precipitation series and the set of large-scale processes (namely 500 hPa geopotential heights, 700 hPa geopotential heights, sea-level pressures, 500 hPa vertical pressure velocities and 500–1000 hPa geopotential thicknesses). In the study, statistical preprocessing is implemented by independent component analysis rather than principal component analysis or principal factor analysis. The proposed downscaling method originates from a recurrent neural network model of Jordan that uses not only large-scale predictors, but also the previous states of the relevant local-scale variables. Finally, some possible improvements and suggestions for further study are mentioned. Copyright © 2004 Royal Meteorological Society" @default.
- W2016406377 created "2016-06-24" @default.
- W2016406377 creator A5006947997 @default.
- W2016406377 creator A5018191307 @default.
- W2016406377 creator A5076560114 @default.
- W2016406377 date "2004-02-01" @default.
- W2016406377 modified "2023-09-24" @default.
- W2016406377 title "A statistical downscaling method for monthly total precipitation over Turkey" @default.
- W2016406377 cites W1548802052 @default.
- W2016406377 cites W1581808154 @default.
- W2016406377 cites W1606565274 @default.
- W2016406377 cites W1650569836 @default.
- W2016406377 cites W1959983357 @default.
- W2016406377 cites W1970984569 @default.
- W2016406377 cites W1971491437 @default.
- W2016406377 cites W1972093519 @default.
- W2016406377 cites W1972591698 @default.
- W2016406377 cites W1976474019 @default.
- W2016406377 cites W1978194852 @default.
- W2016406377 cites W1978601068 @default.
- W2016406377 cites W1992504592 @default.
- W2016406377 cites W1992992910 @default.
- W2016406377 cites W1996355918 @default.
- W2016406377 cites W1997150333 @default.
- W2016406377 cites W1998709755 @default.
- W2016406377 cites W2016295668 @default.
- W2016406377 cites W2019502123 @default.
- W2016406377 cites W2022028615 @default.
- W2016406377 cites W2033257654 @default.
- W2016406377 cites W2038593450 @default.
- W2016406377 cites W2042320239 @default.
- W2016406377 cites W2042760326 @default.
- W2016406377 cites W2043791726 @default.
- W2016406377 cites W2044334655 @default.
- W2016406377 cites W2049053724 @default.
- W2016406377 cites W2059540928 @default.
- W2016406377 cites W2074337504 @default.
- W2016406377 cites W2080712057 @default.
- W2016406377 cites W2085923181 @default.
- W2016406377 cites W2091206738 @default.
- W2016406377 cites W2092610385 @default.
- W2016406377 cites W2093636245 @default.
- W2016406377 cites W2094794852 @default.
- W2016406377 cites W2096835869 @default.
- W2016406377 cites W2099741732 @default.
- W2016406377 cites W2102647403 @default.
- W2016406377 cites W2110242546 @default.
- W2016406377 cites W2110485445 @default.
- W2016406377 cites W2110571744 @default.
- W2016406377 cites W2117154081 @default.
- W2016406377 cites W2123716044 @default.
- W2016406377 cites W2129348073 @default.
- W2016406377 cites W2137347187 @default.
- W2016406377 cites W2137825550 @default.
- W2016406377 cites W2154890045 @default.
- W2016406377 cites W2162398415 @default.
- W2016406377 cites W2162964652 @default.
- W2016406377 cites W2164740813 @default.
- W2016406377 cites W2171479055 @default.
- W2016406377 cites W2173251738 @default.
- W2016406377 cites W2174400750 @default.
- W2016406377 cites W2175321096 @default.
- W2016406377 cites W2179624300 @default.
- W2016406377 cites W2179874655 @default.
- W2016406377 cites W2285257517 @default.
- W2016406377 cites W2503993098 @default.
- W2016406377 cites W2523276336 @default.
- W2016406377 cites W2798058877 @default.
- W2016406377 cites W2918116096 @default.
- W2016406377 cites W3010932768 @default.
- W2016406377 cites W3157264244 @default.
- W2016406377 cites W51212796 @default.
- W2016406377 cites W2114001875 @default.
- W2016406377 doi "https://doi.org/10.1002/joc.997" @default.
- W2016406377 hasPublicationYear "2004" @default.
- W2016406377 type Work @default.
- W2016406377 sameAs 2016406377 @default.
- W2016406377 citedByCount "104" @default.
- W2016406377 countsByYear W20164063772012 @default.
- W2016406377 countsByYear W20164063772013 @default.
- W2016406377 countsByYear W20164063772014 @default.
- W2016406377 countsByYear W20164063772015 @default.
- W2016406377 countsByYear W20164063772016 @default.
- W2016406377 countsByYear W20164063772017 @default.
- W2016406377 countsByYear W20164063772018 @default.
- W2016406377 countsByYear W20164063772019 @default.
- W2016406377 countsByYear W20164063772020 @default.
- W2016406377 countsByYear W20164063772021 @default.
- W2016406377 countsByYear W20164063772022 @default.
- W2016406377 countsByYear W20164063772023 @default.
- W2016406377 crossrefType "journal-article" @default.
- W2016406377 hasAuthorship W2016406377A5006947997 @default.
- W2016406377 hasAuthorship W2016406377A5018191307 @default.
- W2016406377 hasAuthorship W2016406377A5076560114 @default.
- W2016406377 hasBestOaLocation W20164063771 @default.
- W2016406377 hasConcept C105795698 @default.
- W2016406377 hasConcept C107054158 @default.
- W2016406377 hasConcept C127313418 @default.