Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016451892> ?p ?o ?g. }
- W2016451892 endingPage "4931" @default.
- W2016451892 startingPage "4913" @default.
- W2016451892 abstract "Abstract. Assessment of landslide-triggering rainfall thresholds is useful for early warning in prone areas. In this paper, it is shown how stochastic rainfall models and hydrological and slope stability physically based models can be advantageously combined in a Monte Carlo simulation framework to generate virtually unlimited-length synthetic rainfall and related slope stability factor of safety data, exploiting the information contained in observed rainfall records and field-measurements of soil hydraulic and geotechnical parameters. The synthetic data set, dichotomized in triggering and non-triggering rainfall events, is analyzed by receiver operating characteristics (ROC) analysis to derive stochastic-input physically based thresholds that optimize the trade-off between correct and wrong predictions. Moreover, the specific modeling framework implemented in this work, based on hourly analysis, enables one to analyze the uncertainty related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall). A specific focus is dedicated to the widely used power-law rainfall intensity–duration (I–D) thresholds. Results indicate that variability of intensity during rainfall events influences significantly rainfall intensity and duration associated with landslide triggering. Remarkably, when a time-variable rainfall-rate event is considered, the simulated triggering points may be separated with a very good approximation from the non-triggering ones by a I–D power-law equation, while a representation of rainfall as constant–intensity hyetographs globally leads to non-conservative results. This indicates that the I–D power-law equation is adequate to represent the triggering part due to transient infiltration produced by rainfall events of variable intensity and thus gives a physically based justification for this widely used threshold form, which provides results that are valid when landslide occurrence is mostly due to that part. These conditions are more likely to occur in hillslopes of low specific upslope contributing area, relatively high hydraulic conductivity and high critical wetness ratio. Otherwise, rainfall time history occurring before single rainfall events influences landslide triggering, determining whether a threshold based only on rainfall intensity and duration may be sufficient or it needs to be improved by the introduction of antecedent rainfall variables. Further analyses show that predictability of landslides decreases with soil depth, critical wetness ratio and the increase of vertical basal drainage (leakage) that occurs in the presence of a fractured bedrock." @default.
- W2016451892 created "2016-06-24" @default.
- W2016451892 creator A5018518224 @default.
- W2016451892 creator A5043527538 @default.
- W2016451892 date "2014-12-08" @default.
- W2016451892 modified "2023-09-30" @default.
- W2016451892 title "Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach" @default.
- W2016451892 cites W1594117265 @default.
- W2016451892 cites W1657443735 @default.
- W2016451892 cites W1833035308 @default.
- W2016451892 cites W1963818384 @default.
- W2016451892 cites W1963872206 @default.
- W2016451892 cites W1980934483 @default.
- W2016451892 cites W1986647152 @default.
- W2016451892 cites W1987184734 @default.
- W2016451892 cites W1987675172 @default.
- W2016451892 cites W1988988493 @default.
- W2016451892 cites W1989990869 @default.
- W2016451892 cites W1994073706 @default.
- W2016451892 cites W2001440951 @default.
- W2016451892 cites W2004580578 @default.
- W2016451892 cites W2008313676 @default.
- W2016451892 cites W2016777012 @default.
- W2016451892 cites W2020611012 @default.
- W2016451892 cites W2022032797 @default.
- W2016451892 cites W2022454628 @default.
- W2016451892 cites W2024276616 @default.
- W2016451892 cites W2032600630 @default.
- W2016451892 cites W2033902162 @default.
- W2016451892 cites W2041990424 @default.
- W2016451892 cites W2043593740 @default.
- W2016451892 cites W2044456452 @default.
- W2016451892 cites W2046361090 @default.
- W2016451892 cites W2051149306 @default.
- W2016451892 cites W2052150525 @default.
- W2016451892 cites W2054088683 @default.
- W2016451892 cites W2060905767 @default.
- W2016451892 cites W2062203286 @default.
- W2016451892 cites W2078445710 @default.
- W2016451892 cites W2079333054 @default.
- W2016451892 cites W2079965317 @default.
- W2016451892 cites W2082507487 @default.
- W2016451892 cites W2087884757 @default.
- W2016451892 cites W2096868362 @default.
- W2016451892 cites W2105331429 @default.
- W2016451892 cites W2118930130 @default.
- W2016451892 cites W2121330310 @default.
- W2016451892 cites W2124332223 @default.
- W2016451892 cites W2124759963 @default.
- W2016451892 cites W2131099349 @default.
- W2016451892 cites W2137611024 @default.
- W2016451892 cites W2141282148 @default.
- W2016451892 cites W2154930823 @default.
- W2016451892 cites W2164405141 @default.
- W2016451892 cites W2180039777 @default.
- W2016451892 cites W2314389726 @default.
- W2016451892 cites W2323909103 @default.
- W2016451892 cites W2487631065 @default.
- W2016451892 cites W2904073250 @default.
- W2016451892 cites W2914222188 @default.
- W2016451892 cites W2972470080 @default.
- W2016451892 cites W38928862 @default.
- W2016451892 cites W4244410379 @default.
- W2016451892 cites W7131125 @default.
- W2016451892 doi "https://doi.org/10.5194/hess-18-4913-2014" @default.
- W2016451892 hasPublicationYear "2014" @default.
- W2016451892 type Work @default.
- W2016451892 sameAs 2016451892 @default.
- W2016451892 citedByCount "96" @default.
- W2016451892 countsByYear W20164518922015 @default.
- W2016451892 countsByYear W20164518922016 @default.
- W2016451892 countsByYear W20164518922017 @default.
- W2016451892 countsByYear W20164518922018 @default.
- W2016451892 countsByYear W20164518922019 @default.
- W2016451892 countsByYear W20164518922020 @default.
- W2016451892 countsByYear W20164518922021 @default.
- W2016451892 countsByYear W20164518922022 @default.
- W2016451892 countsByYear W20164518922023 @default.
- W2016451892 crossrefType "journal-article" @default.
- W2016451892 hasAuthorship W2016451892A5018518224 @default.
- W2016451892 hasAuthorship W2016451892A5043527538 @default.
- W2016451892 hasBestOaLocation W20164518921 @default.
- W2016451892 hasConcept C105795698 @default.
- W2016451892 hasConcept C112972136 @default.
- W2016451892 hasConcept C119857082 @default.
- W2016451892 hasConcept C121332964 @default.
- W2016451892 hasConcept C127313418 @default.
- W2016451892 hasConcept C153294291 @default.
- W2016451892 hasConcept C186295008 @default.
- W2016451892 hasConcept C187320778 @default.
- W2016451892 hasConcept C19499675 @default.
- W2016451892 hasConcept C2777317252 @default.
- W2016451892 hasConcept C33923547 @default.
- W2016451892 hasConcept C39432304 @default.
- W2016451892 hasConcept C41008148 @default.
- W2016451892 hasConcept C76886044 @default.
- W2016451892 hasConcept C87040749 @default.
- W2016451892 hasConceptScore W2016451892C105795698 @default.