Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016456744> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2016456744 endingPage "398" @default.
- W2016456744 startingPage "385" @default.
- W2016456744 abstract "IN NONSMOOTH analysis and optimization, subgradients come in many different flavors, e.g. approximate, Dini, proximal, (Clarke) generalized; see [2, 5, 6, 12, 14, 191. These subgradients are important and valuable tools. However, many questions remain unsolved concerning the exact link between the function and its subgradients. For instance, can two functions, not differing by an additive constant, have the same subgradients? In this paper, we study the fundamental problem of determining functions that can be recovered, up to an additive constant, from the knowledge of their subgradients. This “integration” problem is not very well understood, and very few functions or classes of functions are known to be recoverable from their subgradients. In Section 4, we show that if the “basic constraint qualification” holds at R, then the composition of a closed (i.e. lowersemicontinuous) proper convex function with a twice continuously differentiable mapping is determined up to an additive constant by its generalized subgradients (actually in this case all above-mentioned subgradients are the same). Beside the obvious theoretical interest of this integration problem, it is our hope (or perhaps our long-term goal) that once this problem is better understood, we can then tackle the question of uniqueness of solutions to generalized differential equations involving subgradients in place of partial derivatives. An example of such an equation that well deserves study is the extended Hamilton-Jacobi equation used in optimal control; see Clarke [2]. Let us also mention that a problem similar to the integration problem is the one of determining the set-valued mappings that are in fact subgradient set-valued mappings (uniqueness is not mandatory); for a contribution to this problem see Janin [8]. Before we look at some of the known cases, where the function can be recovered from its subgradients, let us look at some negative examples. It is clear that not every function can be recovered, up to an additive constant, from its subgradients. We only need to look at the following two functions: 0 x50 0 x10 f(x) = 1 x>o g(x) = 2 x>o." @default.
- W2016456744 created "2016-06-24" @default.
- W2016456744 creator A5043414034 @default.
- W2016456744 date "1991-01-01" @default.
- W2016456744 modified "2023-10-18" @default.
- W2016456744 title "Integration of subdifferentials of nonconvex functions" @default.
- W2016456744 cites W1966480644 @default.
- W2016456744 cites W2000985550 @default.
- W2016456744 cites W2010802791 @default.
- W2016456744 cites W2038887391 @default.
- W2016456744 cites W2060169771 @default.
- W2016456744 cites W2110041091 @default.
- W2016456744 cites W2117500014 @default.
- W2016456744 cites W2139160710 @default.
- W2016456744 cites W2157170476 @default.
- W2016456744 cites W2314329970 @default.
- W2016456744 cites W2324319698 @default.
- W2016456744 doi "https://doi.org/10.1016/0362-546x(91)90078-f" @default.
- W2016456744 hasPublicationYear "1991" @default.
- W2016456744 type Work @default.
- W2016456744 sameAs 2016456744 @default.
- W2016456744 citedByCount "74" @default.
- W2016456744 countsByYear W20164567442012 @default.
- W2016456744 countsByYear W20164567442013 @default.
- W2016456744 countsByYear W20164567442014 @default.
- W2016456744 countsByYear W20164567442015 @default.
- W2016456744 countsByYear W20164567442016 @default.
- W2016456744 countsByYear W20164567442018 @default.
- W2016456744 countsByYear W20164567442019 @default.
- W2016456744 countsByYear W20164567442020 @default.
- W2016456744 countsByYear W20164567442022 @default.
- W2016456744 countsByYear W20164567442023 @default.
- W2016456744 crossrefType "journal-article" @default.
- W2016456744 hasAuthorship W2016456744A5043414034 @default.
- W2016456744 hasConcept C28826006 @default.
- W2016456744 hasConcept C33923547 @default.
- W2016456744 hasConcept C41008148 @default.
- W2016456744 hasConceptScore W2016456744C28826006 @default.
- W2016456744 hasConceptScore W2016456744C33923547 @default.
- W2016456744 hasConceptScore W2016456744C41008148 @default.
- W2016456744 hasIssue "4" @default.
- W2016456744 hasLocation W20164567441 @default.
- W2016456744 hasOpenAccess W2016456744 @default.
- W2016456744 hasPrimaryLocation W20164567441 @default.
- W2016456744 hasRelatedWork W1987371472 @default.
- W2016456744 hasRelatedWork W1993700123 @default.
- W2016456744 hasRelatedWork W1994109492 @default.
- W2016456744 hasRelatedWork W2037491434 @default.
- W2016456744 hasRelatedWork W2089811522 @default.
- W2016456744 hasRelatedWork W2094362282 @default.
- W2016456744 hasRelatedWork W2316250911 @default.
- W2016456744 hasRelatedWork W2351859806 @default.
- W2016456744 hasRelatedWork W4205135043 @default.
- W2016456744 hasRelatedWork W4239376463 @default.
- W2016456744 hasVolume "17" @default.
- W2016456744 isParatext "false" @default.
- W2016456744 isRetracted "false" @default.
- W2016456744 magId "2016456744" @default.
- W2016456744 workType "article" @default.