Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016475051> ?p ?o ?g. }
- W2016475051 endingPage "227" @default.
- W2016475051 startingPage "220" @default.
- W2016475051 abstract "Biologic/functional imaging (e.g., fluorodeoxyglucose/3'-deoxy-3'-fluorothymidine-positron emission tomography) is promising to provide information on tumor cell repopulation. Such information is important in the design of biologically conformal radiotherapy for cancer. The questions remaining unclear are whether it is necessary to escalate the dose to the regions with rapid cell repopulation in the tumor target and, if so, by how much. The purpose of this work was to address these questions using radiobiologic modeling.The generalized linear-quadratic model, extended to account for the effect of clonogenic cell repopulation, was used to calculate the cell-killing efficiency of radiotherapy. The standard Poisson tumor control probability (TCP) model was used to bridge cell killing to treatment outcome. Prostate cancer was chosen as the example for this study. In situ measurements of prostate cancer patients have shown that the potential doubling time of tumor cells has a large variation, ranging from 15 to 170 days. On the basis of the linear-quadratic and TCP parameters (alpha = 0.14 Gy(-1), alpha/beta = 3.1 Gy, and the number of clonogens K = 10(6)-10(7) cells) determined in earlier studies, we evaluated the influence of tumor cell repopulation during protracted treatment courses on treatment outcome. The dose escalations, which can be used to combat aggressive cell repopulation in regions with different doubling times (15-170 days) and sizes (5, 10, 15, and 40 cm(3) of a 40-cm(3) tumor), were calculated for commonly practiced radiotherapy modalities. The influence of linear-quadratic parameters on this calculation was also considered.The impact of tumor cell repopulation on TCP and the corresponding dose escalation required to account for this impact were investigated for both external beam radiotherapy and permanent implantation. The results indicated that for regions with aggressive tumor cell growth, dose escalation is necessary to compensate for the repopulation effect. For example, for tumors with an effective doubling time changing from 42 days to 15 days, the prescription dose of external beam radiotherapy needs to be increased from 75.6 to 81 Gy to maintain a target TCP of 80% for intermediate-risk prostate cancer. For (125)I implants, dose escalation from 152 to 160 Gy is required for the same target TCP. These data were calculated on the basis of an alpha/beta ratio of 3.1 Gy. Greater dose escalations are required if the alpha/beta ratio is 1.5 Gy (e.g., 88 Gy for external beam radiotherapy or 180 Gy for (125)I implantation for the same treatment outcome). Our study results showed that it is important to cover the entire tumor volume, including all aggressive spots, with the desired prescription dose, especially for low-dose-rate brachytherapy.Dose escalation is necessary to offset the accelerated tumor cell repopulation during prolonged treatment courses. This study provides a preliminary estimate of the dose escalation for prostate cancer based on the in situ measurements of potential doubling time and radiobiologic models. The proposed dose prescriptions are technically feasible for clinical trials." @default.
- W2016475051 created "2016-06-24" @default.
- W2016475051 creator A5041461325 @default.
- W2016475051 creator A5086768936 @default.
- W2016475051 date "2005-01-01" @default.
- W2016475051 modified "2023-10-14" @default.
- W2016475051 title "Impact of tumor repopulation on radiotherapy planning" @default.
- W2016475051 cites W1969762811 @default.
- W2016475051 cites W1971747664 @default.
- W2016475051 cites W1978242635 @default.
- W2016475051 cites W1978615670 @default.
- W2016475051 cites W1980020949 @default.
- W2016475051 cites W1982316564 @default.
- W2016475051 cites W1990510898 @default.
- W2016475051 cites W1992110189 @default.
- W2016475051 cites W1993327591 @default.
- W2016475051 cites W2006946025 @default.
- W2016475051 cites W2018323448 @default.
- W2016475051 cites W2021587639 @default.
- W2016475051 cites W2021730017 @default.
- W2016475051 cites W2025583075 @default.
- W2016475051 cites W2025727536 @default.
- W2016475051 cites W2026900109 @default.
- W2016475051 cites W2034161051 @default.
- W2016475051 cites W2043680485 @default.
- W2016475051 cites W2052611475 @default.
- W2016475051 cites W2056402604 @default.
- W2016475051 cites W2060026632 @default.
- W2016475051 cites W2062007210 @default.
- W2016475051 cites W2070423003 @default.
- W2016475051 cites W2078569105 @default.
- W2016475051 cites W2078869193 @default.
- W2016475051 cites W2083837664 @default.
- W2016475051 cites W2104631398 @default.
- W2016475051 cites W2105150213 @default.
- W2016475051 cites W2106816194 @default.
- W2016475051 cites W2120189249 @default.
- W2016475051 cites W2121988687 @default.
- W2016475051 cites W2130514725 @default.
- W2016475051 cites W2135238404 @default.
- W2016475051 cites W2138341566 @default.
- W2016475051 cites W2150779888 @default.
- W2016475051 cites W2151988941 @default.
- W2016475051 cites W2166406736 @default.
- W2016475051 cites W2170974955 @default.
- W2016475051 cites W2420520780 @default.
- W2016475051 doi "https://doi.org/10.1016/j.ijrobp.2004.09.043" @default.
- W2016475051 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15629615" @default.
- W2016475051 hasPublicationYear "2005" @default.
- W2016475051 type Work @default.
- W2016475051 sameAs 2016475051 @default.
- W2016475051 citedByCount "61" @default.
- W2016475051 countsByYear W20164750512013 @default.
- W2016475051 countsByYear W20164750512014 @default.
- W2016475051 countsByYear W20164750512015 @default.
- W2016475051 countsByYear W20164750512016 @default.
- W2016475051 countsByYear W20164750512017 @default.
- W2016475051 countsByYear W20164750512018 @default.
- W2016475051 countsByYear W20164750512019 @default.
- W2016475051 countsByYear W20164750512020 @default.
- W2016475051 countsByYear W20164750512021 @default.
- W2016475051 countsByYear W20164750512022 @default.
- W2016475051 countsByYear W20164750512023 @default.
- W2016475051 crossrefType "journal-article" @default.
- W2016475051 hasAuthorship W2016475051A5041461325 @default.
- W2016475051 hasAuthorship W2016475051A5086768936 @default.
- W2016475051 hasConcept C109159458 @default.
- W2016475051 hasConcept C117262875 @default.
- W2016475051 hasConcept C121608353 @default.
- W2016475051 hasConcept C125118446 @default.
- W2016475051 hasConcept C126322002 @default.
- W2016475051 hasConcept C143998085 @default.
- W2016475051 hasConcept C1491633281 @default.
- W2016475051 hasConcept C2780192828 @default.
- W2016475051 hasConcept C2780918802 @default.
- W2016475051 hasConcept C28328180 @default.
- W2016475051 hasConcept C2989005 @default.
- W2016475051 hasConcept C48900799 @default.
- W2016475051 hasConcept C502942594 @default.
- W2016475051 hasConcept C509974204 @default.
- W2016475051 hasConcept C54355233 @default.
- W2016475051 hasConcept C71924100 @default.
- W2016475051 hasConcept C86803240 @default.
- W2016475051 hasConceptScore W2016475051C109159458 @default.
- W2016475051 hasConceptScore W2016475051C117262875 @default.
- W2016475051 hasConceptScore W2016475051C121608353 @default.
- W2016475051 hasConceptScore W2016475051C125118446 @default.
- W2016475051 hasConceptScore W2016475051C126322002 @default.
- W2016475051 hasConceptScore W2016475051C143998085 @default.
- W2016475051 hasConceptScore W2016475051C1491633281 @default.
- W2016475051 hasConceptScore W2016475051C2780192828 @default.
- W2016475051 hasConceptScore W2016475051C2780918802 @default.
- W2016475051 hasConceptScore W2016475051C28328180 @default.
- W2016475051 hasConceptScore W2016475051C2989005 @default.
- W2016475051 hasConceptScore W2016475051C48900799 @default.
- W2016475051 hasConceptScore W2016475051C502942594 @default.
- W2016475051 hasConceptScore W2016475051C509974204 @default.
- W2016475051 hasConceptScore W2016475051C54355233 @default.