Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016476642> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2016476642 endingPage "27" @default.
- W2016476642 startingPage "20" @default.
- W2016476642 abstract "Problem statement: Most of Seasonal Autoregressive Integrated Moving Average (SARIMA) models that used for forecasting seasonal time series are multiplicative SARIMA models. These models assume that there is a significant parameter as a result of multiplication between nonseasonal and seasonal parameters without testing by certain statistical test. Moreover, most popular statistical software such as MINITAB and SPSS only has facility to fit a multiplicative model. The aim of this research is to propose a new procedure for indentifying the most appropriate order of SARIMA model whether it involves subset, multiplicative or additive order. In particular, the study examined whether a multiplicative parameter existed in the SARIMA model. Approach: Theoretical derivation about Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions from subset, multiplicative and additive SARIMA model was firstly discussed and then R program was used to create the graphics of these theoretical ACF and PACF. Then, two monthly datasets were used as case studies, i.e. the international airline passenger data and series about the number of tourist arrivals to Bali, Indonesia. The model identification step to determine the order of ARIMA model was done by using MINITAB program and the model estimation step used SAS program to test whether the model consisted of subset, multiplicative or additive order. Results: The theoretical ACF and PACF showed that subset, multiplicative and additive SARIMA models have different patterns, especially at the lag as a result of multiplication between non-seasonal and seasonal lags. Modeling of the airline data yielded a subset SARIMA model as the best model, whereas an additive SARIMA model is the best model for forecasting the number of tourist arrivals to Bali. Conclusion: Both of case studies showed that a multiplicative SARIMA model was not the best model for forecasting these data. The comparison evaluation showed that subset and additive SARIMA models gave more accurate forecasted values at out-sample datasets than multiplicative SARIMA model for airline and tourist arrivals datasets respectively. This study is valuable contribution to the Box-Jenkins procedure particularly at the model identification and estimation steps in SARIMA model. Further work involving multiple seasonal ARIMA models, such as short term load data forecasting in certain countries, may provide further insights regarding the subset, multiplicative or additive orders." @default.
- W2016476642 created "2016-06-24" @default.
- W2016476642 creator A5029980940 @default.
- W2016476642 date "2011-01-01" @default.
- W2016476642 modified "2023-09-27" @default.
- W2016476642 title "Time Series Forecasting by using Seasonal Autoregressive Integrated Moving Average: Subset, Multiplicative or Additive Model" @default.
- W2016476642 cites W1964768203 @default.
- W2016476642 cites W1984799410 @default.
- W2016476642 cites W1985664682 @default.
- W2016476642 cites W2021305006 @default.
- W2016476642 cites W2044727491 @default.
- W2016476642 cites W2049289224 @default.
- W2016476642 cites W2072505311 @default.
- W2016476642 cites W2079436405 @default.
- W2016476642 cites W2090031994 @default.
- W2016476642 cites W2092315180 @default.
- W2016476642 cites W2101686124 @default.
- W2016476642 cites W2110584355 @default.
- W2016476642 cites W2117587017 @default.
- W2016476642 cites W2123269579 @default.
- W2016476642 cites W2125425767 @default.
- W2016476642 cites W2141480421 @default.
- W2016476642 cites W2145856394 @default.
- W2016476642 cites W2149391626 @default.
- W2016476642 cites W2167002804 @default.
- W2016476642 cites W3123817161 @default.
- W2016476642 cites W2114001875 @default.
- W2016476642 doi "https://doi.org/10.3844/jmssp.2011.20.27" @default.
- W2016476642 hasPublicationYear "2011" @default.
- W2016476642 type Work @default.
- W2016476642 sameAs 2016476642 @default.
- W2016476642 citedByCount "61" @default.
- W2016476642 countsByYear W20164766422013 @default.
- W2016476642 countsByYear W20164766422014 @default.
- W2016476642 countsByYear W20164766422015 @default.
- W2016476642 countsByYear W20164766422016 @default.
- W2016476642 countsByYear W20164766422017 @default.
- W2016476642 countsByYear W20164766422018 @default.
- W2016476642 countsByYear W20164766422019 @default.
- W2016476642 countsByYear W20164766422020 @default.
- W2016476642 countsByYear W20164766422021 @default.
- W2016476642 countsByYear W20164766422022 @default.
- W2016476642 countsByYear W20164766422023 @default.
- W2016476642 crossrefType "journal-article" @default.
- W2016476642 hasAuthorship W2016476642A5029980940 @default.
- W2016476642 hasBestOaLocation W20164766421 @default.
- W2016476642 hasConcept C105795698 @default.
- W2016476642 hasConcept C114775468 @default.
- W2016476642 hasConcept C134306372 @default.
- W2016476642 hasConcept C143724316 @default.
- W2016476642 hasConcept C149782125 @default.
- W2016476642 hasConcept C151406439 @default.
- W2016476642 hasConcept C151730666 @default.
- W2016476642 hasConcept C155380588 @default.
- W2016476642 hasConcept C159877910 @default.
- W2016476642 hasConcept C203223496 @default.
- W2016476642 hasConcept C24338571 @default.
- W2016476642 hasConcept C33923547 @default.
- W2016476642 hasConcept C42747912 @default.
- W2016476642 hasConcept C5297727 @default.
- W2016476642 hasConcept C86803240 @default.
- W2016476642 hasConceptScore W2016476642C105795698 @default.
- W2016476642 hasConceptScore W2016476642C114775468 @default.
- W2016476642 hasConceptScore W2016476642C134306372 @default.
- W2016476642 hasConceptScore W2016476642C143724316 @default.
- W2016476642 hasConceptScore W2016476642C149782125 @default.
- W2016476642 hasConceptScore W2016476642C151406439 @default.
- W2016476642 hasConceptScore W2016476642C151730666 @default.
- W2016476642 hasConceptScore W2016476642C155380588 @default.
- W2016476642 hasConceptScore W2016476642C159877910 @default.
- W2016476642 hasConceptScore W2016476642C203223496 @default.
- W2016476642 hasConceptScore W2016476642C24338571 @default.
- W2016476642 hasConceptScore W2016476642C33923547 @default.
- W2016476642 hasConceptScore W2016476642C42747912 @default.
- W2016476642 hasConceptScore W2016476642C5297727 @default.
- W2016476642 hasConceptScore W2016476642C86803240 @default.
- W2016476642 hasIssue "1" @default.
- W2016476642 hasLocation W20164766421 @default.
- W2016476642 hasOpenAccess W2016476642 @default.
- W2016476642 hasPrimaryLocation W20164766421 @default.
- W2016476642 hasRelatedWork W1562203027 @default.
- W2016476642 hasRelatedWork W2061377831 @default.
- W2016476642 hasRelatedWork W2246176936 @default.
- W2016476642 hasRelatedWork W2518538438 @default.
- W2016476642 hasRelatedWork W4205312218 @default.
- W2016476642 hasRelatedWork W4240774717 @default.
- W2016476642 hasRelatedWork W4247202353 @default.
- W2016476642 hasRelatedWork W4312557201 @default.
- W2016476642 hasRelatedWork W4385388092 @default.
- W2016476642 hasRelatedWork W621671069 @default.
- W2016476642 hasVolume "7" @default.
- W2016476642 isParatext "false" @default.
- W2016476642 isRetracted "false" @default.
- W2016476642 magId "2016476642" @default.
- W2016476642 workType "article" @default.