Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016506418> ?p ?o ?g. }
- W2016506418 endingPage "924" @default.
- W2016506418 startingPage "911" @default.
- W2016506418 abstract "While forest inventories based on airborne laser scanning data (ALS) using the area based approach (ABA) have reached operational status, methods using the individual tree crown approach (ITC) have basically remained a research issue. One of the main obstacles for operational applications of ITC is biased results often experienced due to segmentation errors. In this article, we propose a new method, called “semi-ITC” that overcomes the main problems related to ITC by imputing ground truth data within crown segments from the nearest neighboring segment. This may be none, one, or several trees. The distances between segments were derived based on a set of explanatory variables using two nonparametric methods, i.e., most similar neighbor inference (MSN) and random forest (RF). RF favored the imputation of common observations in the data set which resulted in significant biases. Main conclusions are therefore based on MSN. The explanatory variables were calculated by means of small footprint ALS and multispectral data. When testing with empirical data the new method compared favorably to the well-known ABA. Another advantage of the new method over the ABA is that it allowed for the modeling of rare tree species. The results of predicting timber volume with the semi-ITC method were unbiased and the root mean squared error (RMSE) on plot level was smaller than the standard deviation of the observed response variables. The relative RMSEs after cross validation using semi-ITC for total volume and volume of the individual species pine, spruce, birch, and aspen on plot level were 17, 38, 40, 101, and 222%, respectively. Due to the unbiasedness of the estimation, this study is a showcase for how to use crown segments resulting from ITC algorithms in a forest inventory context." @default.
- W2016506418 created "2016-06-24" @default.
- W2016506418 creator A5001913092 @default.
- W2016506418 creator A5031067219 @default.
- W2016506418 creator A5034250940 @default.
- W2016506418 creator A5073215366 @default.
- W2016506418 creator A5075301550 @default.
- W2016506418 date "2010-04-01" @default.
- W2016506418 modified "2023-10-17" @default.
- W2016506418 title "Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data" @default.
- W2016506418 cites W1496824059 @default.
- W2016506418 cites W1973523498 @default.
- W2016506418 cites W1975937257 @default.
- W2016506418 cites W1981897942 @default.
- W2016506418 cites W1987794512 @default.
- W2016506418 cites W1988246220 @default.
- W2016506418 cites W1991576283 @default.
- W2016506418 cites W1996263757 @default.
- W2016506418 cites W1996938046 @default.
- W2016506418 cites W1997120165 @default.
- W2016506418 cites W2000345291 @default.
- W2016506418 cites W2009214675 @default.
- W2016506418 cites W2019126302 @default.
- W2016506418 cites W2041408126 @default.
- W2016506418 cites W2042891401 @default.
- W2016506418 cites W2053618729 @default.
- W2016506418 cites W2055314812 @default.
- W2016506418 cites W2061969208 @default.
- W2016506418 cites W2065401301 @default.
- W2016506418 cites W2072334158 @default.
- W2016506418 cites W2074706991 @default.
- W2016506418 cites W2080157231 @default.
- W2016506418 cites W2083734357 @default.
- W2016506418 cites W2085741981 @default.
- W2016506418 cites W2088763983 @default.
- W2016506418 cites W2093449654 @default.
- W2016506418 cites W2097337758 @default.
- W2016506418 cites W2097631297 @default.
- W2016506418 cites W2125899407 @default.
- W2016506418 cites W2128135560 @default.
- W2016506418 cites W2131058553 @default.
- W2016506418 cites W2131472136 @default.
- W2016506418 cites W2132097058 @default.
- W2016506418 cites W2146974384 @default.
- W2016506418 cites W2151549592 @default.
- W2016506418 cites W2163795496 @default.
- W2016506418 cites W2169059815 @default.
- W2016506418 cites W2328811614 @default.
- W2016506418 cites W2911964244 @default.
- W2016506418 doi "https://doi.org/10.1016/j.rse.2009.12.004" @default.
- W2016506418 hasPublicationYear "2010" @default.
- W2016506418 type Work @default.
- W2016506418 sameAs 2016506418 @default.
- W2016506418 citedByCount "217" @default.
- W2016506418 countsByYear W20165064182012 @default.
- W2016506418 countsByYear W20165064182013 @default.
- W2016506418 countsByYear W20165064182014 @default.
- W2016506418 countsByYear W20165064182015 @default.
- W2016506418 countsByYear W20165064182016 @default.
- W2016506418 countsByYear W20165064182017 @default.
- W2016506418 countsByYear W20165064182018 @default.
- W2016506418 countsByYear W20165064182019 @default.
- W2016506418 countsByYear W20165064182020 @default.
- W2016506418 countsByYear W20165064182021 @default.
- W2016506418 countsByYear W20165064182022 @default.
- W2016506418 countsByYear W20165064182023 @default.
- W2016506418 crossrefType "journal-article" @default.
- W2016506418 hasAuthorship W2016506418A5001913092 @default.
- W2016506418 hasAuthorship W2016506418A5031067219 @default.
- W2016506418 hasAuthorship W2016506418A5034250940 @default.
- W2016506418 hasAuthorship W2016506418A5073215366 @default.
- W2016506418 hasAuthorship W2016506418A5075301550 @default.
- W2016506418 hasConcept C102366305 @default.
- W2016506418 hasConcept C105795698 @default.
- W2016506418 hasConcept C113174947 @default.
- W2016506418 hasConcept C120665830 @default.
- W2016506418 hasConcept C121332964 @default.
- W2016506418 hasConcept C134306372 @default.
- W2016506418 hasConcept C139945424 @default.
- W2016506418 hasConcept C141349535 @default.
- W2016506418 hasConcept C146849305 @default.
- W2016506418 hasConcept C147103442 @default.
- W2016506418 hasConcept C154945302 @default.
- W2016506418 hasConcept C169258074 @default.
- W2016506418 hasConcept C173163844 @default.
- W2016506418 hasConcept C205649164 @default.
- W2016506418 hasConcept C28631016 @default.
- W2016506418 hasConcept C33923547 @default.
- W2016506418 hasConcept C39432304 @default.
- W2016506418 hasConcept C41008148 @default.
- W2016506418 hasConcept C520434653 @default.
- W2016506418 hasConcept C54286561 @default.
- W2016506418 hasConcept C58489278 @default.
- W2016506418 hasConcept C62649853 @default.
- W2016506418 hasConceptScore W2016506418C102366305 @default.
- W2016506418 hasConceptScore W2016506418C105795698 @default.
- W2016506418 hasConceptScore W2016506418C113174947 @default.
- W2016506418 hasConceptScore W2016506418C120665830 @default.