Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016508304> ?p ?o ?g. }
- W2016508304 endingPage "21" @default.
- W2016508304 startingPage "12" @default.
- W2016508304 abstract "We apply machine learning in the form of a nearest neighbor instance-based algorithm (NN) to generate full photometric redshift probability density functions (PDFs) for objects in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS DR5). We use a conceptually simple but novel application of NN to generate the PDFs, perturbing the object colors by their measurement error and using the resulting instances of nearest neighbor distributions to generate numerous individual redshifts. When the redshifts are compared to existing SDSS spectroscopic data, we find that the mean value of each PDF has a dispersion between the photometric and spectroscopic redshift consistent with other machine learning techniques, being σ = 0.0207 ± 0.0001 for main sample galaxies to r < 17.77 mag, σ = 0.0243 ± 0.0002 for luminous red galaxies to r≲ 19.2 mag, and σ = 0.343 ± 0.005 for quasars to i < 20.3 mag. The PDFs allow the selection of subsets with improved statistics. For quasars, the improvement is dramatic: for those with a single peak in their probability distribution, the dispersion is reduced from 0.343 to σ = 0.117 ± 0.010, and the photometric redshift is within 0.3 of the spectroscopic redshift for 99.3% ± 0.1% of the objects. Thus, for this optical quasar sample, we can virtually eliminate catastrophic photometric redshift estimates. In addition to the SDSS sample, we incorporate ultraviolet photometry from the Third Data Release of the Galaxy Evolution Explorer All-Sky Imaging Survey (GALEX AIS GR3) to create PDFs for objects seen in both surveys. For quasars, the increased coverage of the observed-frame UV of the SED results in significant improvement over the full SDSS sample, with σ = 0.234 ± 0.010. We demonstrate that this improvement is genuine and not an artifact of the SDSS-GALEX matching process." @default.
- W2016508304 created "2016-06-24" @default.
- W2016508304 creator A5043454829 @default.
- W2016508304 creator A5054388255 @default.
- W2016508304 creator A5058172787 @default.
- W2016508304 creator A5066643515 @default.
- W2016508304 creator A5078172733 @default.
- W2016508304 creator A5085763615 @default.
- W2016508304 date "2008-08-10" @default.
- W2016508304 modified "2023-10-18" @default.
- W2016508304 title "Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and<i>GALEX</i>" @default.
- W2016508304 cites W1480376833 @default.
- W2016508304 cites W1970531442 @default.
- W2016508304 cites W1971010732 @default.
- W2016508304 cites W1978622282 @default.
- W2016508304 cites W1981633849 @default.
- W2016508304 cites W1987362922 @default.
- W2016508304 cites W1991564874 @default.
- W2016508304 cites W1992083220 @default.
- W2016508304 cites W1996537612 @default.
- W2016508304 cites W2004543017 @default.
- W2016508304 cites W2005629457 @default.
- W2016508304 cites W2010191884 @default.
- W2016508304 cites W2025543924 @default.
- W2016508304 cites W2026619221 @default.
- W2016508304 cites W2032744495 @default.
- W2016508304 cites W2036914160 @default.
- W2016508304 cites W2037502800 @default.
- W2016508304 cites W2041956369 @default.
- W2016508304 cites W2049764493 @default.
- W2016508304 cites W2062713883 @default.
- W2016508304 cites W2064308618 @default.
- W2016508304 cites W2066773429 @default.
- W2016508304 cites W2080691528 @default.
- W2016508304 cites W2084797356 @default.
- W2016508304 cites W2090231561 @default.
- W2016508304 cites W2092766941 @default.
- W2016508304 cites W2103067535 @default.
- W2016508304 cites W2107646254 @default.
- W2016508304 cites W2109510044 @default.
- W2016508304 cites W2111817932 @default.
- W2016508304 cites W2112028701 @default.
- W2016508304 cites W2117431169 @default.
- W2016508304 cites W2128515757 @default.
- W2016508304 cites W2137615998 @default.
- W2016508304 cites W2147526948 @default.
- W2016508304 cites W2149145478 @default.
- W2016508304 cites W2150195330 @default.
- W2016508304 cites W2157917411 @default.
- W2016508304 cites W2158708758 @default.
- W2016508304 cites W2163859725 @default.
- W2016508304 cites W2163944076 @default.
- W2016508304 cites W2167635287 @default.
- W2016508304 cites W2167888367 @default.
- W2016508304 cites W2950912493 @default.
- W2016508304 cites W3098989241 @default.
- W2016508304 cites W3099186397 @default.
- W2016508304 cites W3102678714 @default.
- W2016508304 cites W3104300173 @default.
- W2016508304 cites W3104504071 @default.
- W2016508304 cites W3123116725 @default.
- W2016508304 cites W3123261968 @default.
- W2016508304 doi "https://doi.org/10.1086/589646" @default.
- W2016508304 hasPublicationYear "2008" @default.
- W2016508304 type Work @default.
- W2016508304 sameAs 2016508304 @default.
- W2016508304 citedByCount "81" @default.
- W2016508304 countsByYear W20165083042012 @default.
- W2016508304 countsByYear W20165083042013 @default.
- W2016508304 countsByYear W20165083042014 @default.
- W2016508304 countsByYear W20165083042015 @default.
- W2016508304 countsByYear W20165083042016 @default.
- W2016508304 countsByYear W20165083042017 @default.
- W2016508304 countsByYear W20165083042018 @default.
- W2016508304 countsByYear W20165083042019 @default.
- W2016508304 countsByYear W20165083042020 @default.
- W2016508304 countsByYear W20165083042021 @default.
- W2016508304 countsByYear W20165083042022 @default.
- W2016508304 crossrefType "journal-article" @default.
- W2016508304 hasAuthorship W2016508304A5043454829 @default.
- W2016508304 hasAuthorship W2016508304A5054388255 @default.
- W2016508304 hasAuthorship W2016508304A5058172787 @default.
- W2016508304 hasAuthorship W2016508304A5066643515 @default.
- W2016508304 hasAuthorship W2016508304A5078172733 @default.
- W2016508304 hasAuthorship W2016508304A5085763615 @default.
- W2016508304 hasBestOaLocation W20165083041 @default.
- W2016508304 hasConcept C105795698 @default.
- W2016508304 hasConcept C121332964 @default.
- W2016508304 hasConcept C1276947 @default.
- W2016508304 hasConcept C135041427 @default.
- W2016508304 hasConcept C149441793 @default.
- W2016508304 hasConcept C150846664 @default.
- W2016508304 hasConcept C2780974285 @default.
- W2016508304 hasConcept C33024259 @default.
- W2016508304 hasConcept C33923547 @default.
- W2016508304 hasConcept C44870925 @default.
- W2016508304 hasConcept C68271606 @default.
- W2016508304 hasConcept C73329638 @default.