Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016509560> ?p ?o ?g. }
- W2016509560 endingPage "177" @default.
- W2016509560 startingPage "165" @default.
- W2016509560 abstract "In this study, an adaptive network-based fuzzy inference system (ANFIS) and a neural network were tested for the ability of these techniques to forecast the annual excess returns of three large publicly traded companies from a time series of said returns. The predictive ability of these techniques was compared with that of an autoregressive moving average (ARMA) model. The Fair–Shiller test was used in the comparisons in order to obtain results that were not subjective and so that conclusions could be made regarding the information used by the techniques in the generation of their forecasts. Since predictive ability does not translate to profitability, a simple trading strategy was used to determine the ability to generate profits from trading upon the forecasts of the respective techniques. As hypothesized, the ANFIS and neural network techniques are able to generate forecasts with significant predictive ability. However, neither technique dominates the other or the ARMA model. In tests of the ability of the techniques to generate profits from their forecasts, a simple trading strategy was used (trading on the predicted sign of the return). The ANFIS and the neural network generated profits in all of the trading scenarios. However, neither technique dominated the other, nor did they consistently outperform the traditional and naive models (strategies). The mixed results in the predictive ability tests and the profitability tests indicate that the conclusions from the study differ based upon the context in which the forecasts are used. Copyright © 2005 John Wiley & Sons, Ltd." @default.
- W2016509560 created "2016-06-24" @default.
- W2016509560 creator A5003010196 @default.
- W2016509560 date "2005-07-01" @default.
- W2016509560 modified "2023-09-24" @default.
- W2016509560 title "Forecasting annual excess stock returns via an adaptive network-based fuzzy inference system" @default.
- W2016509560 cites W157480665 @default.
- W2016509560 cites W1663658588 @default.
- W2016509560 cites W1964074981 @default.
- W2016509560 cites W1982933110 @default.
- W2016509560 cites W1999454793 @default.
- W2016509560 cites W2015393497 @default.
- W2016509560 cites W2018976175 @default.
- W2016509560 cites W2019207321 @default.
- W2016509560 cites W2021898620 @default.
- W2016509560 cites W2023190806 @default.
- W2016509560 cites W2023959308 @default.
- W2016509560 cites W2031979791 @default.
- W2016509560 cites W2032180816 @default.
- W2016509560 cites W2036753645 @default.
- W2016509560 cites W2042176276 @default.
- W2016509560 cites W2047837580 @default.
- W2016509560 cites W2078979233 @default.
- W2016509560 cites W2083119721 @default.
- W2016509560 cites W2084166521 @default.
- W2016509560 cites W2085150224 @default.
- W2016509560 cites W2096768134 @default.
- W2016509560 cites W2104129931 @default.
- W2016509560 cites W2104384848 @default.
- W2016509560 cites W2132286633 @default.
- W2016509560 cites W2149115758 @default.
- W2016509560 cites W2157107861 @default.
- W2016509560 doi "https://doi.org/10.1002/isaf.264" @default.
- W2016509560 hasPublicationYear "2005" @default.
- W2016509560 type Work @default.
- W2016509560 sameAs 2016509560 @default.
- W2016509560 citedByCount "26" @default.
- W2016509560 countsByYear W20165095602013 @default.
- W2016509560 countsByYear W20165095602014 @default.
- W2016509560 countsByYear W20165095602015 @default.
- W2016509560 countsByYear W20165095602016 @default.
- W2016509560 countsByYear W20165095602017 @default.
- W2016509560 countsByYear W20165095602018 @default.
- W2016509560 countsByYear W20165095602020 @default.
- W2016509560 countsByYear W20165095602021 @default.
- W2016509560 countsByYear W20165095602022 @default.
- W2016509560 crossrefType "journal-article" @default.
- W2016509560 hasAuthorship W2016509560A5003010196 @default.
- W2016509560 hasConcept C10138342 @default.
- W2016509560 hasConcept C119857082 @default.
- W2016509560 hasConcept C127413603 @default.
- W2016509560 hasConcept C129361004 @default.
- W2016509560 hasConcept C131562839 @default.
- W2016509560 hasConcept C149782125 @default.
- W2016509560 hasConcept C154945302 @default.
- W2016509560 hasConcept C159877910 @default.
- W2016509560 hasConcept C162324750 @default.
- W2016509560 hasConcept C186108316 @default.
- W2016509560 hasConcept C195975749 @default.
- W2016509560 hasConcept C204036174 @default.
- W2016509560 hasConcept C2776214188 @default.
- W2016509560 hasConcept C2987376176 @default.
- W2016509560 hasConcept C41008148 @default.
- W2016509560 hasConcept C50644808 @default.
- W2016509560 hasConcept C58166 @default.
- W2016509560 hasConcept C74883015 @default.
- W2016509560 hasConcept C78519656 @default.
- W2016509560 hasConceptScore W2016509560C10138342 @default.
- W2016509560 hasConceptScore W2016509560C119857082 @default.
- W2016509560 hasConceptScore W2016509560C127413603 @default.
- W2016509560 hasConceptScore W2016509560C129361004 @default.
- W2016509560 hasConceptScore W2016509560C131562839 @default.
- W2016509560 hasConceptScore W2016509560C149782125 @default.
- W2016509560 hasConceptScore W2016509560C154945302 @default.
- W2016509560 hasConceptScore W2016509560C159877910 @default.
- W2016509560 hasConceptScore W2016509560C162324750 @default.
- W2016509560 hasConceptScore W2016509560C186108316 @default.
- W2016509560 hasConceptScore W2016509560C195975749 @default.
- W2016509560 hasConceptScore W2016509560C204036174 @default.
- W2016509560 hasConceptScore W2016509560C2776214188 @default.
- W2016509560 hasConceptScore W2016509560C2987376176 @default.
- W2016509560 hasConceptScore W2016509560C41008148 @default.
- W2016509560 hasConceptScore W2016509560C50644808 @default.
- W2016509560 hasConceptScore W2016509560C58166 @default.
- W2016509560 hasConceptScore W2016509560C74883015 @default.
- W2016509560 hasConceptScore W2016509560C78519656 @default.
- W2016509560 hasIssue "3" @default.
- W2016509560 hasLocation W20165095601 @default.
- W2016509560 hasOpenAccess W2016509560 @default.
- W2016509560 hasPrimaryLocation W20165095601 @default.
- W2016509560 hasRelatedWork W1643768816 @default.
- W2016509560 hasRelatedWork W1668308244 @default.
- W2016509560 hasRelatedWork W1778843519 @default.
- W2016509560 hasRelatedWork W2016509560 @default.
- W2016509560 hasRelatedWork W2300290509 @default.
- W2016509560 hasRelatedWork W2562311745 @default.
- W2016509560 hasRelatedWork W2803497576 @default.
- W2016509560 hasRelatedWork W2946438382 @default.