Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016550079> ?p ?o ?g. }
- W2016550079 endingPage "1120" @default.
- W2016550079 startingPage "1110" @default.
- W2016550079 abstract "Osteoporosis is characterized by bone loss and deterioration of the trabecular bone (TB) architecture that leads to impaired overall mechanical strength of the bone. Bone mineral density (BMD) measured by dual‐energy x‐ray absorptiometry is currently the standard clinical metric assessing bone integrity but it fails to capture the structural changes in the TB. Recent research suggests that structure contributes to bone strength in a manner complementary to BMD. Besides parameters of scale such as the mean TB thickness and mean bone volume fraction, parameters describing the anisotropy of the trabecular architecture play an important role in the characterization of TB since trabeculae are preferentially oriented along the direction of local loading. Therefore, the degree of structural anisotropy is of pivotal importance to the bone's mechanical competence. The most common method for measuring structural anisotropy of TB is the mean‐intercept length (MIL). In this work we present a method, based on the three‐dimensional spatial autocorrelation function (ACF), for mapping of the full structural anisotropy ellipsoid of both TB thickness and spacing and we examine its performance as compared to that of MIL. Not only is the ACF method faster by several orders of magnitude, it is also considerably more robust to noise. Further, it is applicable at lower spatial resolution and is relatively insensitive to image shading. The chief reason for ACF's superior performance is that it does not require binarization, which is difficult to achieve in the limited spatial regime of in vivo magnetic resonance imaging. MIL and ACF have been applied to high‐resolution magnetic resonances images of the tibia in a group of ten healthy postmenopausal women by comparing the structural anisotropy and principal direction of the computed fabric tensor for each method. While there is fair agreement between the two methods, ACF analysis yielded greater anisotropy than MIL for both TB thickness and spacing. There was good agreement between the two techniques as far as the eigenvectors of the fabric ellipsoids were concerned, which parallel the bone's macroscopic axis." @default.
- W2016550079 created "2016-06-24" @default.
- W2016550079 creator A5027405160 @default.
- W2016550079 creator A5033203259 @default.
- W2016550079 creator A5041300224 @default.
- W2016550079 creator A5087804284 @default.
- W2016550079 date "2007-02-27" @default.
- W2016550079 modified "2023-09-26" @default.
- W2016550079 title "Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to<i>in vivo</i>magnetic resonance imaging" @default.
- W2016550079 cites W1964983194 @default.
- W2016550079 cites W1965347179 @default.
- W2016550079 cites W1974259943 @default.
- W2016550079 cites W1984579670 @default.
- W2016550079 cites W1987551491 @default.
- W2016550079 cites W1994350680 @default.
- W2016550079 cites W2000175914 @default.
- W2016550079 cites W2010262005 @default.
- W2016550079 cites W2028724000 @default.
- W2016550079 cites W2030421686 @default.
- W2016550079 cites W2031474103 @default.
- W2016550079 cites W2036551377 @default.
- W2016550079 cites W2042695653 @default.
- W2016550079 cites W2045802506 @default.
- W2016550079 cites W2059784307 @default.
- W2016550079 cites W2060361338 @default.
- W2016550079 cites W2064281076 @default.
- W2016550079 cites W2064327319 @default.
- W2016550079 cites W2067810697 @default.
- W2016550079 cites W2070914367 @default.
- W2016550079 cites W2079773565 @default.
- W2016550079 cites W2091033405 @default.
- W2016550079 cites W2091768906 @default.
- W2016550079 cites W2097232421 @default.
- W2016550079 cites W2099405439 @default.
- W2016550079 cites W2113524221 @default.
- W2016550079 cites W2117602643 @default.
- W2016550079 cites W2119262106 @default.
- W2016550079 cites W2125321976 @default.
- W2016550079 cites W2129042174 @default.
- W2016550079 cites W2130295151 @default.
- W2016550079 cites W2132880393 @default.
- W2016550079 cites W2136913611 @default.
- W2016550079 cites W2143138253 @default.
- W2016550079 cites W2144424358 @default.
- W2016550079 cites W2147223502 @default.
- W2016550079 cites W2153105135 @default.
- W2016550079 cites W2294798173 @default.
- W2016550079 cites W2317711251 @default.
- W2016550079 cites W2335297406 @default.
- W2016550079 doi "https://doi.org/10.1118/1.2437281" @default.
- W2016550079 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17441256" @default.
- W2016550079 hasPublicationYear "2007" @default.
- W2016550079 type Work @default.
- W2016550079 sameAs 2016550079 @default.
- W2016550079 citedByCount "50" @default.
- W2016550079 countsByYear W20165500792012 @default.
- W2016550079 countsByYear W20165500792013 @default.
- W2016550079 countsByYear W20165500792014 @default.
- W2016550079 countsByYear W20165500792015 @default.
- W2016550079 countsByYear W20165500792016 @default.
- W2016550079 countsByYear W20165500792017 @default.
- W2016550079 countsByYear W20165500792018 @default.
- W2016550079 countsByYear W20165500792019 @default.
- W2016550079 countsByYear W20165500792020 @default.
- W2016550079 countsByYear W20165500792021 @default.
- W2016550079 countsByYear W20165500792022 @default.
- W2016550079 countsByYear W20165500792023 @default.
- W2016550079 crossrefType "journal-article" @default.
- W2016550079 hasAuthorship W2016550079A5027405160 @default.
- W2016550079 hasAuthorship W2016550079A5033203259 @default.
- W2016550079 hasAuthorship W2016550079A5041300224 @default.
- W2016550079 hasAuthorship W2016550079A5087804284 @default.
- W2016550079 hasConcept C105702510 @default.
- W2016550079 hasConcept C120665830 @default.
- W2016550079 hasConcept C121332964 @default.
- W2016550079 hasConcept C126838900 @default.
- W2016550079 hasConcept C134018914 @default.
- W2016550079 hasConcept C136229726 @default.
- W2016550079 hasConcept C143409427 @default.
- W2016550079 hasConcept C192562407 @default.
- W2016550079 hasConcept C205372480 @default.
- W2016550079 hasConcept C2776541429 @default.
- W2016550079 hasConcept C2781451080 @default.
- W2016550079 hasConcept C46141821 @default.
- W2016550079 hasConcept C71924100 @default.
- W2016550079 hasConcept C85725439 @default.
- W2016550079 hasConceptScore W2016550079C105702510 @default.
- W2016550079 hasConceptScore W2016550079C120665830 @default.
- W2016550079 hasConceptScore W2016550079C121332964 @default.
- W2016550079 hasConceptScore W2016550079C126838900 @default.
- W2016550079 hasConceptScore W2016550079C134018914 @default.
- W2016550079 hasConceptScore W2016550079C136229726 @default.
- W2016550079 hasConceptScore W2016550079C143409427 @default.
- W2016550079 hasConceptScore W2016550079C192562407 @default.
- W2016550079 hasConceptScore W2016550079C205372480 @default.
- W2016550079 hasConceptScore W2016550079C2776541429 @default.
- W2016550079 hasConceptScore W2016550079C2781451080 @default.
- W2016550079 hasConceptScore W2016550079C46141821 @default.