Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016681462> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2016681462 abstract "This paper develops and validates through a series of presentable examples, a comprehensive high-precision, and ultrafast computing concept for solving nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN). The core of this concept is a straightforward scheme that we call nonlinear adaptive optimization (NAOP),” which is used for a precise template calculation for solving nonlinear ODEs and PDEs through CNN processors. One of the key contributions of this work is to demonstrate the possibility of transforming different types of nonlinearities displayed by various classical and well-known nonlinear equations (e.g., van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-equations, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN templates. Furthermore, in the case of PDE solving, the same concept also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDE in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultrafast solver of nonlinear ODEs and/or PDEs. This clearly enables a CNN-based, real-time, ultraprecise, and low-cost computational engineering. As proof of concept, two examples of well-known ODEs are considered namely a second-order linear ODE and a second order nonlinear ODE of the van der Pol type. For each of these ODEs, the corresponding precise CNN templates are derived and are used to deduce the expected solutions. An implementation of the concept developed is possible even on embedded digital platforms (e.g., field programmable gate array (FPGA), digital signal processor (DSP), graphics processing unit (GPU), etc.). This opens a broad range of applications. Ongoing works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting ODEs and PDEs equation models such as Lorenz-, Rössler-, Navier Stokes-, Schrödinger-, Maxwell-, etc." @default.
- W2016681462 created "2016-06-24" @default.
- W2016681462 creator A5016318683 @default.
- W2016681462 creator A5061137052 @default.
- W2016681462 date "2013-03-28" @default.
- W2016681462 modified "2023-09-27" @default.
- W2016681462 title "A Novel General and Robust Method Based on NAOP for Solving Nonlinear Ordinary Differential Equations and Partial Differential Equations by Cellular Neural Networks" @default.
- W2016681462 cites W1512069430 @default.
- W2016681462 cites W1964610855 @default.
- W2016681462 cites W1986390483 @default.
- W2016681462 cites W2006610075 @default.
- W2016681462 cites W2009816549 @default.
- W2016681462 cites W2018669830 @default.
- W2016681462 cites W2038678091 @default.
- W2016681462 cites W2051489653 @default.
- W2016681462 cites W2058910832 @default.
- W2016681462 cites W2074996766 @default.
- W2016681462 cites W2080741453 @default.
- W2016681462 cites W2103048921 @default.
- W2016681462 cites W2108025582 @default.
- W2016681462 cites W2112727462 @default.
- W2016681462 cites W2117666205 @default.
- W2016681462 cites W2131046224 @default.
- W2016681462 cites W2147581061 @default.
- W2016681462 cites W2160121923 @default.
- W2016681462 cites W2167267517 @default.
- W2016681462 cites W2167295983 @default.
- W2016681462 cites W4231279657 @default.
- W2016681462 cites W4244971696 @default.
- W2016681462 cites W4248065227 @default.
- W2016681462 cites W4248302167 @default.
- W2016681462 cites W4250008657 @default.
- W2016681462 cites W4250769649 @default.
- W2016681462 cites W4253306076 @default.
- W2016681462 doi "https://doi.org/10.1115/1.4023241" @default.
- W2016681462 hasPublicationYear "2013" @default.
- W2016681462 type Work @default.
- W2016681462 sameAs 2016681462 @default.
- W2016681462 citedByCount "2" @default.
- W2016681462 countsByYear W20166814622015 @default.
- W2016681462 countsByYear W20166814622020 @default.
- W2016681462 crossrefType "journal-article" @default.
- W2016681462 hasAuthorship W2016681462A5016318683 @default.
- W2016681462 hasAuthorship W2016681462A5061137052 @default.
- W2016681462 hasConcept C121332964 @default.
- W2016681462 hasConcept C134306372 @default.
- W2016681462 hasConcept C154945302 @default.
- W2016681462 hasConcept C158622935 @default.
- W2016681462 hasConcept C28826006 @default.
- W2016681462 hasConcept C33923547 @default.
- W2016681462 hasConcept C34862557 @default.
- W2016681462 hasConcept C41008148 @default.
- W2016681462 hasConcept C50644808 @default.
- W2016681462 hasConcept C51544822 @default.
- W2016681462 hasConcept C62520636 @default.
- W2016681462 hasConcept C78045399 @default.
- W2016681462 hasConcept C812465 @default.
- W2016681462 hasConcept C93779851 @default.
- W2016681462 hasConceptScore W2016681462C121332964 @default.
- W2016681462 hasConceptScore W2016681462C134306372 @default.
- W2016681462 hasConceptScore W2016681462C154945302 @default.
- W2016681462 hasConceptScore W2016681462C158622935 @default.
- W2016681462 hasConceptScore W2016681462C28826006 @default.
- W2016681462 hasConceptScore W2016681462C33923547 @default.
- W2016681462 hasConceptScore W2016681462C34862557 @default.
- W2016681462 hasConceptScore W2016681462C41008148 @default.
- W2016681462 hasConceptScore W2016681462C50644808 @default.
- W2016681462 hasConceptScore W2016681462C51544822 @default.
- W2016681462 hasConceptScore W2016681462C62520636 @default.
- W2016681462 hasConceptScore W2016681462C78045399 @default.
- W2016681462 hasConceptScore W2016681462C812465 @default.
- W2016681462 hasConceptScore W2016681462C93779851 @default.
- W2016681462 hasIssue "3" @default.
- W2016681462 hasLocation W20166814621 @default.
- W2016681462 hasOpenAccess W2016681462 @default.
- W2016681462 hasPrimaryLocation W20166814621 @default.
- W2016681462 hasRelatedWork W1548680320 @default.
- W2016681462 hasRelatedWork W1553476531 @default.
- W2016681462 hasRelatedWork W1768186960 @default.
- W2016681462 hasRelatedWork W1994168050 @default.
- W2016681462 hasRelatedWork W2039453881 @default.
- W2016681462 hasRelatedWork W2068803396 @default.
- W2016681462 hasRelatedWork W2168896685 @default.
- W2016681462 hasRelatedWork W2988233686 @default.
- W2016681462 hasRelatedWork W3098020961 @default.
- W2016681462 hasRelatedWork W4294555489 @default.
- W2016681462 hasVolume "135" @default.
- W2016681462 isParatext "false" @default.
- W2016681462 isRetracted "false" @default.
- W2016681462 magId "2016681462" @default.
- W2016681462 workType "article" @default.