Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016683511> ?p ?o ?g. }
- W2016683511 endingPage "436" @default.
- W2016683511 startingPage "430" @default.
- W2016683511 abstract "No AccessJournal of UrologyClinical Urology: Original Articles1 Aug 1998NOVEL STAGING TOOL FOR LOCALIZED PROSTATE CANCER: A PILOT STUDY USING GENETIC ADAPTIVE NEURAL NETWORKS ASHUTOSH TEWARI and PERINCHERY NARAYAN ASHUTOSH TEWARIASHUTOSH TEWARI More articles by this author and PERINCHERY NARAYANPERINCHERY NARAYAN More articles by this author View All Author Informationhttps://doi.org/10.1016/S0022-5347(01)62916-1AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: An estimated $1.5 billion is spent annually for direct medical expenses and an additional $2.5 billion for indirect costs for the management of prostate cancer. Today there are several procedures for staging prostate cancer, including lymph node dissection. Despite these procedures, the accuracy of predicting extracapsular disease remains low (range 37 to 63, mean 45%). Use of multiple staging procedures adds significantly to the costs of managing prostate cancer. Recently artificial intelligence based neural networks have become available for medical applications. Unlike traditional statistical methods, these networks do not assume linearity or homogeneity of variance and, thus, they are more accurate for clinical data. We applied this concept to staging localized prostate cancer and devised an algorithm that can be used for prostate cancer staging. Materials and Methods: Our study comprised 1,200 men with clinically organ confined prostate cancer who underwent preoperative staging using serum prostate specific antigen, systematic biopsy and Gleason scoring before radical prostatectomy and lymphadenectomy. The performance of the neural network was validated for a subset of patients and network predictions were compared with actual pathological stage. Mean patient age was 62.9 years, mean serum prostate specific antigen 8.1 ng./ml. and mean biopsy Gleason 6. Of the patients 55% had organ confined disease, 27% positive margins, 8% seminal vesicle involvement and 7% lymph node disease. Of margin positive patients 30% also had seminal vesicle involvement, while of seminal vesicle positive patients 50% also had positive margins. Results: The sensitivity of the network was 81 to 100%, and specificity was 72 to 75% for various predictions of margin, seminal vesicle and lymph node involvement. The negative predictive values tended to be relatively high for all 3 features (range 92 to 100%). The neural network missed only 8% of patients with margin positive disease, and 2% with lymph node and 0% with seminal vesicle involvement. Conclusions: Our study suggests that neural networks may be useful as an initial staging tool for detection of extracapsular extension in patients with clinically organ confined prostate cancer. These networks preclude unnecessary staging tests for 63% of patients with clinically organ confined prostate cancer. References 1 : Cancer statistics, 1997. CA1997; 47: 5. Google Scholar 2 : Using prostate-specific antigen to eliminate unnecessary diagnostic tests: significant worldwide economic implications. Urology1995; 46: 26. Google Scholar 3 : The National Cancer Data Base report on prostate cancer. American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer1995; 76: 1104. Google Scholar 4 : The National Cancer Data Base report on longitudinal observations on prostate cancer. Cancer1996; 77: 2162. Google Scholar 5 : Long-term (15 years) results after radical prostatectomy for clinically localized (stage T2c or lower) prostate cancer. J. Urol.1994; 152: 1850. Link, Google Scholar 6 : Prostate cancer: here and now (editorial). CA1995; 45. Google Scholar 7 : Prediction of progression following radical prostatectomy. A multivariate analysis of 721 men with long-term follow-up. Amer. J. Surg. Path.1996; 20: 286. Google Scholar 8 : Seminal vesicle biopsy: accuracy and implications for staging of prostate cancer. Urology1996; 48: 757. Crossref, Medline, Google Scholar 9 : Has there been a recent shift in the pathological features and prognosis of patients treated with radical prostatectomy?. J. Urol.1997; 157: 2212. Link, Google Scholar 10 : Risk factors for progression in patients with prostate cancer treated with radical prostatectomy. Sem. Urol. Oncol.1996; 14: 12. discussion 21. Google Scholar 11 : The pathological features and prognosis of prostate cancer detectable with current diagnostic tests. J. Urol.1994; 152: 1714. Link, Google Scholar 12 : Characteristics of prostate cancers detected in a multimodality early detection program. The Investigators of the American Cancer Society-National Prostate Cancer Detection Project. Cancer1993; 72: 1701. Google Scholar 13 : Correlation of pathologic findings with progression after radical retropubic prostatectomy. Cancer1993; 71: 3582. Crossref, Medline, Google Scholar 14 : Influence of capsular penetration on progression following radical prostatectomy: a study of 196 cases with long-term followup. J. Urol.1993; 150: 135. Link, Google Scholar 15 : Survival after radical prostatectomy. J.A.M.A.1997; 278: 44. Google Scholar 16 : Incidence and significance of positive margins in radical prostatectomy specimens. Urol. Clin. N. Amer.1996; 23: 651. Google Scholar 17 : Should we treat localized prostate cancer? An opinion. Urology1995; 46: 607. Google Scholar 18 : Editorial: predicting biological aggressiveness in prostate cancer-desperately seeking a marker. J. Urol.1997; 157: 228. Abstract, Google Scholar 19 : Using PSA to eliminate the staging radionuclide bone scan. Significant economic implications. Urol. Clin. N. Amer.1993; 20: 705. Google Scholar 20 : The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol.1993; 150: 110. Link, Google Scholar 21 : Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. J.A.M.A.1997; 277: 1445. Google Scholar 22 : The role of transrectal ultrasound-guided biopsy-based staging, preoperative serum prostate-specific antigen, and biopsy Gleason score in prediction of final pathologic diagnosis in prostate cancer. Urology1995; 46: 205. Crossref, Medline, Google Scholar 23 : Prediction of capsular perforation and seminal vesicle invasion in prostate cancer. J. Urol.1996; 155: 1361. Link, Google Scholar 24 : An algorithm for predicting nonorgan confined prostate cancer using the results obtained from sextant core biopsies with prostate specific antigen level. J. Urol.1996; 156: 1375. Link, Google Scholar 25 : Combined modality staging of prostate carcinoma and its utility in predicting pathologic stage and postoperative prostate specific antigen failure. Urology1997; 49: 23. Google Scholar 26 : Evaluation of a nomogram used to predict the pathologic stage of clinically localized prostate carcinoma. Cancer1997; 79: 528. Google Scholar 27 : Cost effective staging of prostate cancer using genetic adaptive neural networks. Presented at annual meeting of Southeastern Section of American Urological Association, Naples, FloridaMarch 8-11, 1997; . Google Scholar 28 : Genetic adaptive probabilistic neural network models in prediction of pathological stage in management of localized prostate cancer: a pilot study. J. Urol.1997; 157: 293. abstract 1142. Google Scholar 29 : Treatment of early stage prostate cancer: radical prostatectomy. Important Adv. Oncol.1994; : 211. Google Scholar 30 : Editorial: the status of radical prostatectomy in the United States in 1993: where do we go from here?. J. Urol.1994; 152: 1816. Abstract, Google Scholar 31 : Re: Potency-sparing radical retropubic prostatectomy: a simplified anatomical approach. J. Urol.1996; 155: 294. Abstract, Google Scholar 32 : Data qualification: logic analysis applied toward neural network training. Comput. Biol. Med.1994; 24: 157. Google Scholar 33 : Dynamics and bifurcations of two coupled neural oscillators with different connection types. Bull. Math. Biol.1995; 57: 809. Google Scholar 34 : Artificial neural networks for cancer research: outcome prediction. Sem. Surg. Oncol.1994; 10: 73. Google Scholar 35 : The value of artificial neural network techniques to develop diagnostic systems in cardiology. Pacing. Clin. Electrophysiol.1994; 17: 1672. Google Scholar 36 : Genetic algorithms: principles of natural selection applied to computation. Science1993; 261: 872. Google Scholar 37 : Artificial neural networks for decision support in clinical medicine. Ann. Med.1995; 27: 509. Google Scholar 38 : Neural Networks in Computer Intelligence and SubNeural Networks in Computer Intelligence. New York: McGraw-Hill, Inc.1994: 1. Google Scholar 39 : Neural network for automatic analysis of motility data. Methods. Inf. Med.1994; 33: 157. Google Scholar 40 : Computer modeling in urology. Urology1996; 47: 14. Google Scholar 41 : Artificial intelligence in medicine and male infertility. World J. Urol.1993; 11: 129. Google Scholar 42 : Neural network studies. 2. Variable selection. J. Chem. Inf. Comput. Sci.1996; 36: 794. Google Scholar 43 : A mathematical solution to a network designing problem. J. Comput. Biol.1996; 3: 97. Google Scholar 44 : Neural Computing: Theory and Practice and SubNeural Computing: Theory and Practice. New York: Van Nostrand Reinhold1998: 1. Google Scholar 45 : Clinical applications of Bayesian belief networks in pathology. Pathologica1995; 87: 237. Google Scholar 46 : Use of a probabilistic neural network to estimate the risk of mortality after cardiac surgery. Med. Decision Making1997; 17: 178. Google Scholar 47 : Training neural networks by means of genetic algorithms working on very long chromosomes. Int. J. Neural Systems1995; 6: 299. Google Scholar 48 : Data modelling with neural networks: advantages and limitations. J. Comput. Aided Mol. Des.1997; 11: 135. Google Scholar 49 : A comparison of three techniques for rapid model development: an application in patient risk-stratification. Proc. AMIA Ann. Fall Symposium1996; 443. Google Scholar 50 : Genetic algorithms-based design and optimization of statistical quality-control procedures. Clin. Chem.1993; 39: 1972. Google Scholar 51 : Artificial evolution: a new path for artificial intelligence?. Brain Cognition1997; 34: 130. Google Scholar 52 : Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer1997; 79: 1338. Google Scholar 53 : Use of genetic algorithms to solve biomedical problems. Methods Comput.1995; 12: 193. Google Scholar 54 : A comparison of methods for self-adaptation in evolutionary algorithms. Biosystems1995; 36: 157. Google Scholar 55 : Application of artificial neural networks to clinical pharmacology. Int. J. Clin. Pharmacol. Ther.1996; 34: 510. Google Scholar 56 : Artificial neural networks improve the accuracy of cancer survival prediction. Cancer1996; 79: 857. Google Scholar 57 : A general presentation of artificial neural networks. I. Subst. Use Misuse1997; 32: 97. Google Scholar 58 : Neural networks: what are they?. J. Burn Care Rehab.1997; 18: 72. Google Scholar 59 : Analysis of clinical data using neural nets. J. Biopharm. Statistics1996; 6: 83. Google Scholar 60 : A nationwide survey of practicing urologists: current management of benign prostatic hyperplasia and clinically localized prostate cancer. J. Urol.1997; 158: 488. Link, Google Scholar 61 : Staging prostate cancer-1997: current methods and limitations. Eur. Urol.1997; 32: 2. Google Scholar 62 : Prostate cancer. The problem of prognostic factors. Amer. J. Clin. Path.1996; 106: S45. Google Scholar 63 : Outcome based staging for clinically localized adenocarcinoma of the prostate. J. Urol.1997; 158: 1422. Link, Google Scholar 64 : Utility of preoperative serum prostate-specific antigen concentration and biopsy Gleason score in predicting risk of pelvic lymph node metastases in prostate cancer. Urology1994; 44: 519. Crossref, Medline, Google Scholar 65 : A neural network to analyze fertility data. Fertil. Steril.1993; 60: 324. Google Scholar 66 : Commentary on the use of neural networks in clinical urology. J. Urol.1995; 153: 1362. Link, Google Scholar 67 : Computational tools for the modern andrologist. J. Androl.1996; 17: 462. Google Scholar 68 : Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol.1994; 152: 1923. Link, Google Scholar 69 : An artificial intelligence based genetic adaptive neural network model to predict pathological stage of prostate cancer in patients undergoing radical prostatectomy. J. Urol.1998; 159: 112. abstract 431. Google Scholar 70 : The use and accuracy of cross-sectional imaging and fine needle aspiration cytology for detection of pelvic lymph node metastases before radical prostatectomy. J. Urol.1995; 153: 993. Link, Google Scholar 71 : MR staging of prostate cancer. How we can improve our accuracy with decisions aids and optimal techniques. Magnetic Resonance Imaging Clin. N. Amer.1996; 4: 519. Google Scholar 72 : Endorectal coil magnetic resonance imaging of prostate cancer. Sem. Urol.1995; 13: 113. Google Scholar Division of Urology, University of Florida and Department of Veteran Affairs Medical Center, Gainesville, Florida© 1998 by American Urological Association, Inc.FiguresReferencesRelatedDetailsCited byAbbod M, Catto J, Linkens D and Hamdy F (2007) Application of Artificial Intelligence to the Management of Urological CancerJournal of Urology, VOL. 178, NO. 4, (1150-1156), Online publication date: 1-Oct-2007.NAYA Y and BABAIAN R (2018) The Predictors of Pelvic Lymph Node Metastasis at Radical Retropubic ProstatectomyJournal of Urology, VOL. 170, NO. 6, (2306-2310), Online publication date: 1-Dec-2003.CONRAD S, GRAEFEN M, PICHLMEIER U, HENKE R, ERBERSDOBLER A, HAMMERER P and HULAND H (2018) PROSPECTIVE VALIDATION OF AN ALGORITHM WITH SYSTEMATIC SEXTANT BIOPSY TO PREDICT PELVIC LYMPH NODE METASTASIS IN PATIENTS WITH CLINICALLY LOCALIZED PROSTATIC CARCINOMAJournal of Urology, VOL. 167, NO. 2 Part 1, (521-525), Online publication date: 1-Feb-2002.BORQUE A, SANZ G, ALLEPUZ C, PLAZA L, GIL P and RIOJA L (2018) THE USE OF NEURAL NETWORKS AND LOGISTIC REGRESSION ANALYSIS FOR PREDICTING PATHOLOGICAL STAGE IN MEN UNDERGOING RADICAL PROSTATECTOMY: A POPULATION BASED STUDYJournal of Urology, VOL. 166, NO. 5, (1672-1678), Online publication date: 1-Nov-2001.SONKE G, HESKES T, VERBEEK A, DE LA ROSETTE J and KIEMENEY L (2018) PREDICTION OF BLADDER OUTLET OBSTRUCTION IN MEN WITH LOWER URINARY TRACT SYMPTOMS USING ARTIFICIAL NEURAL NETWORKSJournal of Urology, VOL. 163, NO. 1, (300-305), Online publication date: 1-Jan-2000. Volume 160Issue 2August 1998Page: 430-436 Advertisement Copyright & Permissions© 1998 by American Urological Association, Inc.MetricsAuthor Information ASHUTOSH TEWARI More articles by this author PERINCHERY NARAYAN More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2016683511 created "2016-06-24" @default.
- W2016683511 creator A5045670350 @default.
- W2016683511 creator A5068285584 @default.
- W2016683511 date "1998-08-01" @default.
- W2016683511 modified "2023-09-25" @default.
- W2016683511 title "NOVEL STAGING TOOL FOR LOCALIZED PROSTATE CANCER: A PILOT STUDY USING GENETIC ADAPTIVE NEURAL NETWORKS" @default.
- W2016683511 cites W123162698 @default.
- W2016683511 cites W1546313835 @default.
- W2016683511 cites W1595796962 @default.
- W2016683511 cites W165132104 @default.
- W2016683511 cites W190857994 @default.
- W2016683511 cites W1958491277 @default.
- W2016683511 cites W1971077250 @default.
- W2016683511 cites W1973951614 @default.
- W2016683511 cites W1977382134 @default.
- W2016683511 cites W1985979629 @default.
- W2016683511 cites W2008263549 @default.
- W2016683511 cites W2024699096 @default.
- W2016683511 cites W2027588785 @default.
- W2016683511 cites W2031763102 @default.
- W2016683511 cites W2031982882 @default.
- W2016683511 cites W2032592968 @default.
- W2016683511 cites W2034898015 @default.
- W2016683511 cites W2041055985 @default.
- W2016683511 cites W2043439115 @default.
- W2016683511 cites W2043861582 @default.
- W2016683511 cites W2047543099 @default.
- W2016683511 cites W2048516791 @default.
- W2016683511 cites W2049101189 @default.
- W2016683511 cites W2050149564 @default.
- W2016683511 cites W2053510778 @default.
- W2016683511 cites W2059166833 @default.
- W2016683511 cites W2061407996 @default.
- W2016683511 cites W2064070106 @default.
- W2016683511 cites W2066146240 @default.
- W2016683511 cites W2068157007 @default.
- W2016683511 cites W2068487107 @default.
- W2016683511 cites W2068909795 @default.
- W2016683511 cites W2070955875 @default.
- W2016683511 cites W2073898361 @default.
- W2016683511 cites W2078618444 @default.
- W2016683511 cites W2081994949 @default.
- W2016683511 cites W2088156602 @default.
- W2016683511 cites W2088555208 @default.
- W2016683511 cites W2093933815 @default.
- W2016683511 cites W2102764008 @default.
- W2016683511 cites W2104377140 @default.
- W2016683511 cites W2113997135 @default.
- W2016683511 cites W2122689321 @default.
- W2016683511 cites W2128718068 @default.
- W2016683511 cites W2139260226 @default.
- W2016683511 cites W2260225395 @default.
- W2016683511 cites W2292896901 @default.
- W2016683511 cites W2329106677 @default.
- W2016683511 cites W2395087379 @default.
- W2016683511 cites W2401599495 @default.
- W2016683511 cites W2406447945 @default.
- W2016683511 cites W2413915377 @default.
- W2016683511 cites W4235380988 @default.
- W2016683511 cites W4252605154 @default.
- W2016683511 cites W4252818296 @default.
- W2016683511 doi "https://doi.org/10.1016/s0022-5347(01)62916-1" @default.
- W2016683511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9679892" @default.
- W2016683511 hasPublicationYear "1998" @default.
- W2016683511 type Work @default.
- W2016683511 sameAs 2016683511 @default.
- W2016683511 citedByCount "74" @default.
- W2016683511 countsByYear W20166835112012 @default.
- W2016683511 countsByYear W20166835112013 @default.
- W2016683511 countsByYear W20166835112014 @default.
- W2016683511 countsByYear W20166835112016 @default.
- W2016683511 countsByYear W20166835112020 @default.
- W2016683511 countsByYear W20166835112021 @default.
- W2016683511 countsByYear W20166835112022 @default.
- W2016683511 crossrefType "journal-article" @default.
- W2016683511 hasAuthorship W2016683511A5045670350 @default.
- W2016683511 hasAuthorship W2016683511A5068285584 @default.
- W2016683511 hasConcept C121608353 @default.
- W2016683511 hasConcept C126322002 @default.
- W2016683511 hasConcept C143998085 @default.
- W2016683511 hasConcept C154945302 @default.
- W2016683511 hasConcept C2776235491 @default.
- W2016683511 hasConcept C2780192828 @default.
- W2016683511 hasConcept C41008148 @default.
- W2016683511 hasConcept C50644808 @default.
- W2016683511 hasConcept C71924100 @default.
- W2016683511 hasConceptScore W2016683511C121608353 @default.
- W2016683511 hasConceptScore W2016683511C126322002 @default.
- W2016683511 hasConceptScore W2016683511C143998085 @default.
- W2016683511 hasConceptScore W2016683511C154945302 @default.
- W2016683511 hasConceptScore W2016683511C2776235491 @default.
- W2016683511 hasConceptScore W2016683511C2780192828 @default.
- W2016683511 hasConceptScore W2016683511C41008148 @default.
- W2016683511 hasConceptScore W2016683511C50644808 @default.
- W2016683511 hasConceptScore W2016683511C71924100 @default.
- W2016683511 hasIssue "2" @default.
- W2016683511 hasLocation W20166835111 @default.