Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016710306> ?p ?o ?g. }
- W2016710306 endingPage "130" @default.
- W2016710306 startingPage "97" @default.
- W2016710306 abstract "The Oshurkovo Complex is a plutonic sheeted complex which represents numerous successive magmatic injections into an expanding system of subparallel and subvertical fractures. It comprises a wide range of rock types including alkali monzodiorite, monzonite, plagioclase-bearing and alkali-feldspar syenites, in the proportion of about 70% mafic rocks to 30% syenite. We suggest that the variation within the complex originated mainly by fractional crystallization of a tephrite magma. The mafic rocks are considered as plutonic equivalents of lamprophyres. They exhibit a high abundance of ternary feldspar and apatite, the latter may attain 7–8 vol.% in monzodiorite. Ternary feldspar is also abundant in the syenites. The entire rock series is characterized by high Ba and Sr concentrations in the bulk rock samples (3000–7000 ppm) and in feldspars (up to 1 wt.%). The mafic magma had amphibole at the liquidus at 1010–1030 °C based on amphibole geothermometer. Temperatures as low as this were due to high H2O and P2O5 contents in the melt (up to 4–6 and ∼2 wt.%, respectively). Crystallization of the syenitic magmas began at about 850 °C (based on ternary feldspar thermometry). The series was formed at an oxygen fugacity from the NNO to HM buffer, or even higher. The evolution of the alkali monzodiorite–syenite series by fractional crystallization of a tephritic magma is established on the basis of geological, mineralogical, geochemical and Sm–Nd and Rb–Sr isotope data. The geochemical modeling suggests that fractionation of amphibole with subordinate apatite from the tephrite magma leaves about 73 wt.% of the residual monzonite melt. Further extraction of amphibole and plagioclase with minor apatite and Fe–Ti oxides could bring to formation of a syenite residuum. Rb–Sr isotopic analyses of biotite, apatite and whole-rock samples constrain the minimum age of basic intrusions at ca. 130 Ma and that of cross-cutting granite pegmatites at ca. 120 Ma. Hence the entire evolution took place in an interval of ≤10 My. Initial 87Sr/86Sr ratios for the mafic rocks range from 0.70511 to 0.70514, and for syenites from 0.70525 to 0.70542. Initial εNd (130 Ma) values for mafic rocks vary from −1.9 to −2.4, and for syenites from −2.9 to −3.5. In a εNd(T) vs. (87Sr/86Sr)i diagram, all rock types of the complex fall in the enriched portion of the Mantle Array, suggesting their derivation from a metasomatized mantle source. However, the small but distinguishable difference in Sr and Nd isotopic compositions between mafic rocks and syenites probably resulted from mild (10–20%) crustal contamination during differentiation. Large negative Nb anomalies are interpreted as a characteristic feature of the source region produced by Precambrian fluid metasomatism above a subduction zone rather than by crustal contamination." @default.
- W2016710306 created "2016-06-24" @default.
- W2016710306 creator A5037504378 @default.
- W2016710306 creator A5046308793 @default.
- W2016710306 creator A5072302866 @default.
- W2016710306 creator A5082519097 @default.
- W2016710306 date "2002-10-01" @default.
- W2016710306 modified "2023-10-18" @default.
- W2016710306 title "Crystal fractionation in the petrogenesis of an alkali monzodiorite–syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia" @default.
- W2016710306 cites W1967950238 @default.
- W2016710306 cites W1970439132 @default.
- W2016710306 cites W1970487785 @default.
- W2016710306 cites W1971329267 @default.
- W2016710306 cites W1974487421 @default.
- W2016710306 cites W1974505893 @default.
- W2016710306 cites W1976233827 @default.
- W2016710306 cites W1976533319 @default.
- W2016710306 cites W1988139464 @default.
- W2016710306 cites W1990952807 @default.
- W2016710306 cites W1997897220 @default.
- W2016710306 cites W2012117555 @default.
- W2016710306 cites W2014123788 @default.
- W2016710306 cites W2018233830 @default.
- W2016710306 cites W2020019938 @default.
- W2016710306 cites W2024575502 @default.
- W2016710306 cites W2024814277 @default.
- W2016710306 cites W2031471539 @default.
- W2016710306 cites W2041124465 @default.
- W2016710306 cites W2043116029 @default.
- W2016710306 cites W2046710075 @default.
- W2016710306 cites W2052497225 @default.
- W2016710306 cites W2053483240 @default.
- W2016710306 cites W2056138560 @default.
- W2016710306 cites W2058889826 @default.
- W2016710306 cites W2063690396 @default.
- W2016710306 cites W2071371719 @default.
- W2016710306 cites W2079681815 @default.
- W2016710306 cites W2087663973 @default.
- W2016710306 cites W2092780280 @default.
- W2016710306 cites W2093535245 @default.
- W2016710306 cites W2167313938 @default.
- W2016710306 cites W2318167179 @default.
- W2016710306 cites W2321639163 @default.
- W2016710306 cites W2331272198 @default.
- W2016710306 cites W2897983685 @default.
- W2016710306 cites W4247579666 @default.
- W2016710306 cites W4252625092 @default.
- W2016710306 cites W4256729107 @default.
- W2016710306 doi "https://doi.org/10.1016/s0024-4937(02)00179-2" @default.
- W2016710306 hasPublicationYear "2002" @default.
- W2016710306 type Work @default.
- W2016710306 sameAs 2016710306 @default.
- W2016710306 citedByCount "62" @default.
- W2016710306 countsByYear W20167103062012 @default.
- W2016710306 countsByYear W20167103062013 @default.
- W2016710306 countsByYear W20167103062014 @default.
- W2016710306 countsByYear W20167103062015 @default.
- W2016710306 countsByYear W20167103062016 @default.
- W2016710306 countsByYear W20167103062017 @default.
- W2016710306 countsByYear W20167103062018 @default.
- W2016710306 countsByYear W20167103062019 @default.
- W2016710306 countsByYear W20167103062020 @default.
- W2016710306 countsByYear W20167103062021 @default.
- W2016710306 countsByYear W20167103062022 @default.
- W2016710306 countsByYear W20167103062023 @default.
- W2016710306 crossrefType "journal-article" @default.
- W2016710306 hasAuthorship W2016710306A5037504378 @default.
- W2016710306 hasAuthorship W2016710306A5046308793 @default.
- W2016710306 hasAuthorship W2016710306A5072302866 @default.
- W2016710306 hasAuthorship W2016710306A5082519097 @default.
- W2016710306 hasConcept C11872896 @default.
- W2016710306 hasConcept C120806208 @default.
- W2016710306 hasConcept C127313418 @default.
- W2016710306 hasConcept C151730666 @default.
- W2016710306 hasConcept C161509811 @default.
- W2016710306 hasConcept C167236342 @default.
- W2016710306 hasConcept C167284885 @default.
- W2016710306 hasConcept C17409809 @default.
- W2016710306 hasConcept C183222429 @default.
- W2016710306 hasConcept C20209278 @default.
- W2016710306 hasConcept C2777729578 @default.
- W2016710306 hasConcept C2778520076 @default.
- W2016710306 hasConcept C2779181077 @default.
- W2016710306 hasConcept C2779870107 @default.
- W2016710306 hasConcept C34122518 @default.
- W2016710306 hasConcept C42787717 @default.
- W2016710306 hasConcept C44938399 @default.
- W2016710306 hasConcept C4992710 @default.
- W2016710306 hasConcept C5900021 @default.
- W2016710306 hasConcept C77928131 @default.
- W2016710306 hasConcept C9566828 @default.
- W2016710306 hasConceptScore W2016710306C11872896 @default.
- W2016710306 hasConceptScore W2016710306C120806208 @default.
- W2016710306 hasConceptScore W2016710306C127313418 @default.
- W2016710306 hasConceptScore W2016710306C151730666 @default.
- W2016710306 hasConceptScore W2016710306C161509811 @default.
- W2016710306 hasConceptScore W2016710306C167236342 @default.
- W2016710306 hasConceptScore W2016710306C167284885 @default.