Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016711172> ?p ?o ?g. }
- W2016711172 endingPage "e0121795" @default.
- W2016711172 startingPage "e0121795" @default.
- W2016711172 abstract "There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries." @default.
- W2016711172 created "2016-06-24" @default.
- W2016711172 creator A5007747306 @default.
- W2016711172 creator A5053510344 @default.
- W2016711172 creator A5073671259 @default.
- W2016711172 creator A5081838760 @default.
- W2016711172 date "2015-03-30" @default.
- W2016711172 modified "2023-10-16" @default.
- W2016711172 title "Statistical Detection of EEG Synchrony Using Empirical Bayesian Inference" @default.
- W2016711172 cites W1824047490 @default.
- W2016711172 cites W1969534031 @default.
- W2016711172 cites W1979817444 @default.
- W2016711172 cites W1986589809 @default.
- W2016711172 cites W1988949556 @default.
- W2016711172 cites W1998855618 @default.
- W2016711172 cites W1999567494 @default.
- W2016711172 cites W2002787138 @default.
- W2016711172 cites W2009149272 @default.
- W2016711172 cites W2010882525 @default.
- W2016711172 cites W2011759261 @default.
- W2016711172 cites W2014332054 @default.
- W2016711172 cites W2015442582 @default.
- W2016711172 cites W2020411042 @default.
- W2016711172 cites W2028944217 @default.
- W2016711172 cites W2028985479 @default.
- W2016711172 cites W2047700897 @default.
- W2016711172 cites W2051691068 @default.
- W2016711172 cites W2054454468 @default.
- W2016711172 cites W2059512699 @default.
- W2016711172 cites W2074089196 @default.
- W2016711172 cites W2079733958 @default.
- W2016711172 cites W2080966898 @default.
- W2016711172 cites W2083131147 @default.
- W2016711172 cites W2084413112 @default.
- W2016711172 cites W2087880221 @default.
- W2016711172 cites W2091300894 @default.
- W2016711172 cites W2091841926 @default.
- W2016711172 cites W2093538953 @default.
- W2016711172 cites W2095997146 @default.
- W2016711172 cites W2099118166 @default.
- W2016711172 cites W2100399775 @default.
- W2016711172 cites W2105381419 @default.
- W2016711172 cites W2106773151 @default.
- W2016711172 cites W2110447609 @default.
- W2016711172 cites W2115810652 @default.
- W2016711172 cites W2125905177 @default.
- W2016711172 cites W2129483560 @default.
- W2016711172 cites W2132324858 @default.
- W2016711172 cites W2135894974 @default.
- W2016711172 cites W2137866512 @default.
- W2016711172 cites W2152476757 @default.
- W2016711172 cites W2162453074 @default.
- W2016711172 cites W2170274836 @default.
- W2016711172 cites W2171652727 @default.
- W2016711172 cites W3144154667 @default.
- W2016711172 cites W2117977519 @default.
- W2016711172 doi "https://doi.org/10.1371/journal.pone.0121795" @default.
- W2016711172 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4379180" @default.
- W2016711172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25822617" @default.
- W2016711172 hasPublicationYear "2015" @default.
- W2016711172 type Work @default.
- W2016711172 sameAs 2016711172 @default.
- W2016711172 citedByCount "2" @default.
- W2016711172 countsByYear W20167111722018 @default.
- W2016711172 countsByYear W20167111722021 @default.
- W2016711172 crossrefType "journal-article" @default.
- W2016711172 hasAuthorship W2016711172A5007747306 @default.
- W2016711172 hasAuthorship W2016711172A5053510344 @default.
- W2016711172 hasAuthorship W2016711172A5073671259 @default.
- W2016711172 hasAuthorship W2016711172A5081838760 @default.
- W2016711172 hasBestOaLocation W20167111721 @default.
- W2016711172 hasConcept C104317684 @default.
- W2016711172 hasConcept C105795698 @default.
- W2016711172 hasConcept C107673813 @default.
- W2016711172 hasConcept C111030470 @default.
- W2016711172 hasConcept C119857082 @default.
- W2016711172 hasConcept C124101348 @default.
- W2016711172 hasConcept C134261354 @default.
- W2016711172 hasConcept C153180895 @default.
- W2016711172 hasConcept C154945302 @default.
- W2016711172 hasConcept C160234255 @default.
- W2016711172 hasConcept C183905921 @default.
- W2016711172 hasConcept C193244246 @default.
- W2016711172 hasConcept C207201462 @default.
- W2016711172 hasConcept C2776214188 @default.
- W2016711172 hasConcept C33923547 @default.
- W2016711172 hasConcept C41008148 @default.
- W2016711172 hasConcept C55493867 @default.
- W2016711172 hasConcept C64869954 @default.
- W2016711172 hasConcept C86803240 @default.
- W2016711172 hasConcept C87007009 @default.
- W2016711172 hasConcept C96608239 @default.
- W2016711172 hasConceptScore W2016711172C104317684 @default.
- W2016711172 hasConceptScore W2016711172C105795698 @default.
- W2016711172 hasConceptScore W2016711172C107673813 @default.
- W2016711172 hasConceptScore W2016711172C111030470 @default.
- W2016711172 hasConceptScore W2016711172C119857082 @default.
- W2016711172 hasConceptScore W2016711172C124101348 @default.