Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016737354> ?p ?o ?g. }
- W2016737354 endingPage "360" @default.
- W2016737354 startingPage "319" @default.
- W2016737354 abstract "This paper is inspired by the work of Nagel and Stein in which the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript p> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis 1 greater-than p greater-than normal infinity right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(1>p>infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> theory has been developed in the setting of the product Carnot-Carathéodory spaces <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M overTilde equals upper M 1 times midline-horizontal-ellipsis times upper M Subscript n> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>×<!-- × --></mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>×<!-- × --></mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>widetilde {M}=M_1times cdots times M_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formed by vector fields satisfying Hörmander’s finite rank condition. The main purpose of this paper is to provide a unified approach to develop the multiparameter Hardy space theory on product spaces of homogeneous type. This theory includes the product Hardy space, its dual, the product <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper B upper M upper O> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi>M</mml:mi> <mml:mi>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>BMO</mml:annotation> </mml:semantics> </mml:math> </inline-formula> space, the boundedness of singular integral operators and Calderón-Zygmund decomposition and interpolation of operators. As a consequence, we obtain the endpoint estimates for those singular integral operators considered by Nagel and Stein (2004). In fact, we will develop most of our theory in the framework of product spaces of homogeneous type which only satisfy the doubling condition and some regularity assumption on the metric. All of our results are established by introducing certain Banach spaces of test functions and distributions, developing discrete Calderón identity and discrete Littlewood-Paley-Stein theory. Our methods do not rely on the Journé-type covering lemma which was the main tool to prove the boundedness of singular integrals on the classical product Hardy spaces." @default.
- W2016737354 created "2016-06-24" @default.
- W2016737354 creator A5025131198 @default.
- W2016737354 creator A5033211512 @default.
- W2016737354 creator A5040342402 @default.
- W2016737354 date "2012-07-24" @default.
- W2016737354 modified "2023-09-27" @default.
- W2016737354 title "Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type" @default.
- W2016737354 cites W1516579295 @default.
- W2016737354 cites W1576998059 @default.
- W2016737354 cites W1579266271 @default.
- W2016737354 cites W180116548 @default.
- W2016737354 cites W1976284538 @default.
- W2016737354 cites W1977607398 @default.
- W2016737354 cites W1983015865 @default.
- W2016737354 cites W1990182066 @default.
- W2016737354 cites W2005469207 @default.
- W2016737354 cites W2006019020 @default.
- W2016737354 cites W2016618620 @default.
- W2016737354 cites W2018085528 @default.
- W2016737354 cites W2024626650 @default.
- W2016737354 cites W2028358933 @default.
- W2016737354 cites W2030863889 @default.
- W2016737354 cites W2030921258 @default.
- W2016737354 cites W2040938727 @default.
- W2016737354 cites W2055095372 @default.
- W2016737354 cites W2059029256 @default.
- W2016737354 cites W2069190132 @default.
- W2016737354 cites W2077512140 @default.
- W2016737354 cites W2081091706 @default.
- W2016737354 cites W2081462990 @default.
- W2016737354 cites W2081818744 @default.
- W2016737354 cites W2088277224 @default.
- W2016737354 cites W2091571469 @default.
- W2016737354 cites W2113739487 @default.
- W2016737354 cites W2141777138 @default.
- W2016737354 cites W2167754830 @default.
- W2016737354 cites W2236046506 @default.
- W2016737354 cites W2313598932 @default.
- W2016737354 cites W2317622276 @default.
- W2016737354 cites W2322028213 @default.
- W2016737354 cites W2325492385 @default.
- W2016737354 cites W2584550354 @default.
- W2016737354 cites W328800714 @default.
- W2016737354 cites W4235764254 @default.
- W2016737354 cites W4237749088 @default.
- W2016737354 cites W4245921302 @default.
- W2016737354 cites W4247101811 @default.
- W2016737354 cites W566072753 @default.
- W2016737354 cites W605765599 @default.
- W2016737354 cites W654435104 @default.
- W2016737354 doi "https://doi.org/10.1090/s0002-9947-2012-05638-8" @default.
- W2016737354 hasPublicationYear "2012" @default.
- W2016737354 type Work @default.
- W2016737354 sameAs 2016737354 @default.
- W2016737354 citedByCount "33" @default.
- W2016737354 countsByYear W20167373542013 @default.
- W2016737354 countsByYear W20167373542014 @default.
- W2016737354 countsByYear W20167373542015 @default.
- W2016737354 countsByYear W20167373542016 @default.
- W2016737354 countsByYear W20167373542017 @default.
- W2016737354 countsByYear W20167373542018 @default.
- W2016737354 countsByYear W20167373542019 @default.
- W2016737354 countsByYear W20167373542020 @default.
- W2016737354 countsByYear W20167373542021 @default.
- W2016737354 countsByYear W20167373542022 @default.
- W2016737354 countsByYear W20167373542023 @default.
- W2016737354 crossrefType "journal-article" @default.
- W2016737354 hasAuthorship W2016737354A5025131198 @default.
- W2016737354 hasAuthorship W2016737354A5033211512 @default.
- W2016737354 hasAuthorship W2016737354A5040342402 @default.
- W2016737354 hasBestOaLocation W20167373541 @default.
- W2016737354 hasConcept C11413529 @default.
- W2016737354 hasConcept C154945302 @default.
- W2016737354 hasConcept C33923547 @default.
- W2016737354 hasConcept C41008148 @default.
- W2016737354 hasConceptScore W2016737354C11413529 @default.
- W2016737354 hasConceptScore W2016737354C154945302 @default.
- W2016737354 hasConceptScore W2016737354C33923547 @default.
- W2016737354 hasConceptScore W2016737354C41008148 @default.
- W2016737354 hasIssue "1" @default.
- W2016737354 hasLocation W20167373541 @default.
- W2016737354 hasOpenAccess W2016737354 @default.
- W2016737354 hasPrimaryLocation W20167373541 @default.
- W2016737354 hasRelatedWork W1979597421 @default.
- W2016737354 hasRelatedWork W2007980826 @default.
- W2016737354 hasRelatedWork W2061531152 @default.
- W2016737354 hasRelatedWork W2077600819 @default.
- W2016737354 hasRelatedWork W2386767533 @default.
- W2016737354 hasRelatedWork W2748952813 @default.
- W2016737354 hasRelatedWork W2899084033 @default.
- W2016737354 hasRelatedWork W3002753104 @default.
- W2016737354 hasRelatedWork W4225152035 @default.
- W2016737354 hasRelatedWork W4245490552 @default.
- W2016737354 hasVolume "365" @default.
- W2016737354 isParatext "false" @default.
- W2016737354 isRetracted "false" @default.
- W2016737354 magId "2016737354" @default.