Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016753974> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2016753974 abstract "Neuro-fuzzy system (NFS) has successfully been widely applied in solving problems across diverse fields, such as signal detection, fault detection, and forecasting. In recent years, many forecasting problems require the processing and learning of large number of dynamic data streams. Existing systems are inadequate in handling this type of complex problem. This paper presents a learning system that incorporates an evolving correlation-based feature selector to handle the high dimensionality of the data streams, and an evolving NFS to sequentially model and extract fuzzy knowledge about these data streams. The proposed system requires no prior knowledge of the data, reads the stream of data in a single pass, and accounts for the time-varying characteristics of the data. These three features allow the system to handle large and dynamic data. The effectiveness of the proposed system is validated on both synthetic and real-world problems. The experiments illustrate the viability of the proposed learning technique, and exemplifies how it can outperform existing NFS. Experiment on real-world stock price forecasting shows a remarkable reduction of error rate by 15.4%." @default.
- W2016753974 created "2016-06-24" @default.
- W2016753974 creator A5000077454 @default.
- W2016753974 creator A5000139218 @default.
- W2016753974 creator A5018208772 @default.
- W2016753974 creator A5063229067 @default.
- W2016753974 date "2012-06-01" @default.
- W2016753974 modified "2023-10-16" @default.
- W2016753974 title "Fuzzy associative learning of feature dependency for time series forecasting" @default.
- W2016753974 cites W115987419 @default.
- W2016753974 cites W187030388 @default.
- W2016753974 cites W1970104171 @default.
- W2016753974 cites W1971084714 @default.
- W2016753974 cites W1991082464 @default.
- W2016753974 cites W1995341919 @default.
- W2016753974 cites W2004873643 @default.
- W2016753974 cites W2016415759 @default.
- W2016753974 cites W2040419414 @default.
- W2016753974 cites W2051412169 @default.
- W2016753974 cites W2062100414 @default.
- W2016753974 cites W2085629944 @default.
- W2016753974 cites W2108249372 @default.
- W2016753974 cites W2108404288 @default.
- W2016753974 cites W2108437236 @default.
- W2016753974 cites W2110289069 @default.
- W2016753974 cites W2116119284 @default.
- W2016753974 cites W2119387367 @default.
- W2016753974 cites W2126272889 @default.
- W2016753974 cites W2129013743 @default.
- W2016753974 cites W2133085637 @default.
- W2016753974 cites W2134262590 @default.
- W2016753974 cites W2144276202 @default.
- W2016753974 cites W2150199067 @default.
- W2016753974 cites W2151863350 @default.
- W2016753974 cites W2169811483 @default.
- W2016753974 cites W2304531936 @default.
- W2016753974 cites W623776627 @default.
- W2016753974 doi "https://doi.org/10.1109/ijcnn.2012.6252542" @default.
- W2016753974 hasPublicationYear "2012" @default.
- W2016753974 type Work @default.
- W2016753974 sameAs 2016753974 @default.
- W2016753974 citedByCount "0" @default.
- W2016753974 crossrefType "proceedings-article" @default.
- W2016753974 hasAuthorship W2016753974A5000077454 @default.
- W2016753974 hasAuthorship W2016753974A5000139218 @default.
- W2016753974 hasAuthorship W2016753974A5018208772 @default.
- W2016753974 hasAuthorship W2016753974A5063229067 @default.
- W2016753974 hasConcept C111030470 @default.
- W2016753974 hasConcept C119857082 @default.
- W2016753974 hasConcept C124101348 @default.
- W2016753974 hasConcept C138885662 @default.
- W2016753974 hasConcept C148483581 @default.
- W2016753974 hasConcept C151406439 @default.
- W2016753974 hasConcept C154945302 @default.
- W2016753974 hasConcept C159423971 @default.
- W2016753974 hasConcept C19768560 @default.
- W2016753974 hasConcept C202444582 @default.
- W2016753974 hasConcept C2776401178 @default.
- W2016753974 hasConcept C33923547 @default.
- W2016753974 hasConcept C41008148 @default.
- W2016753974 hasConcept C41895202 @default.
- W2016753974 hasConcept C58166 @default.
- W2016753974 hasConcept C89198739 @default.
- W2016753974 hasConceptScore W2016753974C111030470 @default.
- W2016753974 hasConceptScore W2016753974C119857082 @default.
- W2016753974 hasConceptScore W2016753974C124101348 @default.
- W2016753974 hasConceptScore W2016753974C138885662 @default.
- W2016753974 hasConceptScore W2016753974C148483581 @default.
- W2016753974 hasConceptScore W2016753974C151406439 @default.
- W2016753974 hasConceptScore W2016753974C154945302 @default.
- W2016753974 hasConceptScore W2016753974C159423971 @default.
- W2016753974 hasConceptScore W2016753974C19768560 @default.
- W2016753974 hasConceptScore W2016753974C202444582 @default.
- W2016753974 hasConceptScore W2016753974C2776401178 @default.
- W2016753974 hasConceptScore W2016753974C33923547 @default.
- W2016753974 hasConceptScore W2016753974C41008148 @default.
- W2016753974 hasConceptScore W2016753974C41895202 @default.
- W2016753974 hasConceptScore W2016753974C58166 @default.
- W2016753974 hasConceptScore W2016753974C89198739 @default.
- W2016753974 hasLocation W20167539741 @default.
- W2016753974 hasOpenAccess W2016753974 @default.
- W2016753974 hasPrimaryLocation W20167539741 @default.
- W2016753974 hasRelatedWork W1594623390 @default.
- W2016753974 hasRelatedWork W2262013048 @default.
- W2016753974 hasRelatedWork W2282752563 @default.
- W2016753974 hasRelatedWork W2588319059 @default.
- W2016753974 hasRelatedWork W2601957415 @default.
- W2016753974 hasRelatedWork W2884983377 @default.
- W2016753974 hasRelatedWork W3174196512 @default.
- W2016753974 hasRelatedWork W3210877509 @default.
- W2016753974 hasRelatedWork W4212852473 @default.
- W2016753974 hasRelatedWork W4225360065 @default.
- W2016753974 isParatext "false" @default.
- W2016753974 isRetracted "false" @default.
- W2016753974 magId "2016753974" @default.
- W2016753974 workType "article" @default.