Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016799887> ?p ?o ?g. }
- W2016799887 abstract "Abstract Background The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. Results In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Conclusion Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature." @default.
- W2016799887 created "2016-06-24" @default.
- W2016799887 creator A5009525535 @default.
- W2016799887 creator A5028518494 @default.
- W2016799887 creator A5045821992 @default.
- W2016799887 creator A5046515259 @default.
- W2016799887 date "2008-12-01" @default.
- W2016799887 modified "2023-10-07" @default.
- W2016799887 title "Multi-label literature classification based on the Gene Ontology graph" @default.
- W2016799887 cites W1530498595 @default.
- W2016799887 cites W1603229901 @default.
- W2016799887 cites W1818881584 @default.
- W2016799887 cites W1981307375 @default.
- W2016799887 cites W2065589669 @default.
- W2016799887 cites W2068055268 @default.
- W2016799887 cites W2087347434 @default.
- W2016799887 cites W2091978351 @default.
- W2016799887 cites W2092795373 @default.
- W2016799887 cites W2098162425 @default.
- W2016799887 cites W2127563440 @default.
- W2016799887 cites W2130367921 @default.
- W2016799887 cites W2130858665 @default.
- W2016799887 cites W2138309709 @default.
- W2016799887 cites W2146241755 @default.
- W2016799887 cites W2148130205 @default.
- W2016799887 cites W2155440340 @default.
- W2016799887 cites W2159583324 @default.
- W2016799887 cites W2169528473 @default.
- W2016799887 doi "https://doi.org/10.1186/1471-2105-9-525" @default.
- W2016799887 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2644325" @default.
- W2016799887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19063730" @default.
- W2016799887 hasPublicationYear "2008" @default.
- W2016799887 type Work @default.
- W2016799887 sameAs 2016799887 @default.
- W2016799887 citedByCount "29" @default.
- W2016799887 countsByYear W20167998872012 @default.
- W2016799887 countsByYear W20167998872013 @default.
- W2016799887 countsByYear W20167998872015 @default.
- W2016799887 countsByYear W20167998872016 @default.
- W2016799887 countsByYear W20167998872017 @default.
- W2016799887 countsByYear W20167998872018 @default.
- W2016799887 countsByYear W20167998872019 @default.
- W2016799887 countsByYear W20167998872020 @default.
- W2016799887 countsByYear W20167998872021 @default.
- W2016799887 crossrefType "journal-article" @default.
- W2016799887 hasAuthorship W2016799887A5009525535 @default.
- W2016799887 hasAuthorship W2016799887A5028518494 @default.
- W2016799887 hasAuthorship W2016799887A5045821992 @default.
- W2016799887 hasAuthorship W2016799887A5046515259 @default.
- W2016799887 hasBestOaLocation W20167998871 @default.
- W2016799887 hasConcept C104317684 @default.
- W2016799887 hasConcept C110615152 @default.
- W2016799887 hasConcept C111472728 @default.
- W2016799887 hasConcept C124101348 @default.
- W2016799887 hasConcept C132525143 @default.
- W2016799887 hasConcept C138885662 @default.
- W2016799887 hasConcept C150194340 @default.
- W2016799887 hasConcept C154945302 @default.
- W2016799887 hasConcept C23123220 @default.
- W2016799887 hasConcept C25810664 @default.
- W2016799887 hasConcept C2776321320 @default.
- W2016799887 hasConcept C2987395477 @default.
- W2016799887 hasConcept C41008148 @default.
- W2016799887 hasConcept C55493867 @default.
- W2016799887 hasConcept C80444323 @default.
- W2016799887 hasConcept C86803240 @default.
- W2016799887 hasConceptScore W2016799887C104317684 @default.
- W2016799887 hasConceptScore W2016799887C110615152 @default.
- W2016799887 hasConceptScore W2016799887C111472728 @default.
- W2016799887 hasConceptScore W2016799887C124101348 @default.
- W2016799887 hasConceptScore W2016799887C132525143 @default.
- W2016799887 hasConceptScore W2016799887C138885662 @default.
- W2016799887 hasConceptScore W2016799887C150194340 @default.
- W2016799887 hasConceptScore W2016799887C154945302 @default.
- W2016799887 hasConceptScore W2016799887C23123220 @default.
- W2016799887 hasConceptScore W2016799887C25810664 @default.
- W2016799887 hasConceptScore W2016799887C2776321320 @default.
- W2016799887 hasConceptScore W2016799887C2987395477 @default.
- W2016799887 hasConceptScore W2016799887C41008148 @default.
- W2016799887 hasConceptScore W2016799887C55493867 @default.
- W2016799887 hasConceptScore W2016799887C80444323 @default.
- W2016799887 hasConceptScore W2016799887C86803240 @default.
- W2016799887 hasIssue "1" @default.
- W2016799887 hasLocation W20167998871 @default.
- W2016799887 hasLocation W20167998872 @default.
- W2016799887 hasLocation W20167998873 @default.
- W2016799887 hasLocation W20167998874 @default.
- W2016799887 hasOpenAccess W2016799887 @default.
- W2016799887 hasPrimaryLocation W20167998871 @default.
- W2016799887 hasRelatedWork W189697517 @default.
- W2016799887 hasRelatedWork W1969816234 @default.
- W2016799887 hasRelatedWork W2046177308 @default.
- W2016799887 hasRelatedWork W2125383951 @default.
- W2016799887 hasRelatedWork W2135708477 @default.
- W2016799887 hasRelatedWork W2168340032 @default.
- W2016799887 hasRelatedWork W2313676623 @default.
- W2016799887 hasRelatedWork W2393185060 @default.
- W2016799887 hasRelatedWork W4210408238 @default.
- W2016799887 hasRelatedWork W79702431 @default.
- W2016799887 hasVolume "9" @default.