Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016802069> ?p ?o ?g. }
- W2016802069 abstract "Random subspace method (RSM), which randomly selects low dimensional feature subspace from the original high dimensional feature space to form new training subsets, is an effective ensemble learning method for high dimensional samples. However, RSM also has the drawbacks: Random selection of features does not guarantee that the selected inputs have the necessary discriminant information. If such is the case, poor classifiers are obtained that damage the ensemble. Thus, we put forward a selective ensemble RSM method Based on FP-Tree. The method obtains a refined transaction database and builds a FP-Tree to compact it, next, selects an ensemble size according to the FP-Tree. Since the proposed method only selects part of classifiers to ensemble which can eliminate the poor individual classifiers and obtain better ensemble results than using all the base classifiers. We utilize the proposed method to fight against the newly proposed HUGO steganographic algorithm. Experiment results show that our method has the overall best detection performance." @default.
- W2016802069 created "2016-06-24" @default.
- W2016802069 creator A5057354930 @default.
- W2016802069 creator A5080341674 @default.
- W2016802069 date "2013-08-01" @default.
- W2016802069 modified "2023-09-24" @default.
- W2016802069 title "Selective Ensemble RSM for High Dimensional Steganographic Detection Based on FP-Tree" @default.
- W2016802069 cites W1875845630 @default.
- W2016802069 cites W1980264541 @default.
- W2016802069 cites W1995276998 @default.
- W2016802069 cites W2001079160 @default.
- W2016802069 cites W2009130368 @default.
- W2016802069 cites W2018576906 @default.
- W2016802069 cites W2026584557 @default.
- W2016802069 cites W2030601587 @default.
- W2016802069 cites W2049562124 @default.
- W2016802069 cites W2054408106 @default.
- W2016802069 cites W2058796521 @default.
- W2016802069 cites W2061397706 @default.
- W2016802069 cites W2064123268 @default.
- W2016802069 cites W2093238900 @default.
- W2016802069 cites W2106663508 @default.
- W2016802069 cites W2113242816 @default.
- W2016802069 cites W2117500881 @default.
- W2016802069 cites W2119762465 @default.
- W2016802069 cites W2133743319 @default.
- W2016802069 cites W2137204852 @default.
- W2016802069 cites W2138451337 @default.
- W2016802069 cites W2170375089 @default.
- W2016802069 cites W22271197 @default.
- W2016802069 cites W29798142 @default.
- W2016802069 cites W2522750342 @default.
- W2016802069 doi "https://doi.org/10.1109/ihmsc.2013.127" @default.
- W2016802069 hasPublicationYear "2013" @default.
- W2016802069 type Work @default.
- W2016802069 sameAs 2016802069 @default.
- W2016802069 citedByCount "0" @default.
- W2016802069 crossrefType "proceedings-article" @default.
- W2016802069 hasAuthorship W2016802069A5057354930 @default.
- W2016802069 hasAuthorship W2016802069A5080341674 @default.
- W2016802069 hasConcept C106135958 @default.
- W2016802069 hasConcept C113174947 @default.
- W2016802069 hasConcept C119857082 @default.
- W2016802069 hasConcept C124101348 @default.
- W2016802069 hasConcept C134306372 @default.
- W2016802069 hasConcept C138885662 @default.
- W2016802069 hasConcept C148483581 @default.
- W2016802069 hasConcept C153180895 @default.
- W2016802069 hasConcept C154945302 @default.
- W2016802069 hasConcept C169258074 @default.
- W2016802069 hasConcept C2776401178 @default.
- W2016802069 hasConcept C32834561 @default.
- W2016802069 hasConcept C33923547 @default.
- W2016802069 hasConcept C41008148 @default.
- W2016802069 hasConcept C41895202 @default.
- W2016802069 hasConcept C45942800 @default.
- W2016802069 hasConcept C52622490 @default.
- W2016802069 hasConceptScore W2016802069C106135958 @default.
- W2016802069 hasConceptScore W2016802069C113174947 @default.
- W2016802069 hasConceptScore W2016802069C119857082 @default.
- W2016802069 hasConceptScore W2016802069C124101348 @default.
- W2016802069 hasConceptScore W2016802069C134306372 @default.
- W2016802069 hasConceptScore W2016802069C138885662 @default.
- W2016802069 hasConceptScore W2016802069C148483581 @default.
- W2016802069 hasConceptScore W2016802069C153180895 @default.
- W2016802069 hasConceptScore W2016802069C154945302 @default.
- W2016802069 hasConceptScore W2016802069C169258074 @default.
- W2016802069 hasConceptScore W2016802069C2776401178 @default.
- W2016802069 hasConceptScore W2016802069C32834561 @default.
- W2016802069 hasConceptScore W2016802069C33923547 @default.
- W2016802069 hasConceptScore W2016802069C41008148 @default.
- W2016802069 hasConceptScore W2016802069C41895202 @default.
- W2016802069 hasConceptScore W2016802069C45942800 @default.
- W2016802069 hasConceptScore W2016802069C52622490 @default.
- W2016802069 hasLocation W20168020691 @default.
- W2016802069 hasOpenAccess W2016802069 @default.
- W2016802069 hasPrimaryLocation W20168020691 @default.
- W2016802069 hasRelatedWork W1503475107 @default.
- W2016802069 hasRelatedWork W1520514216 @default.
- W2016802069 hasRelatedWork W1976507318 @default.
- W2016802069 hasRelatedWork W1982613428 @default.
- W2016802069 hasRelatedWork W1984207970 @default.
- W2016802069 hasRelatedWork W2010269639 @default.
- W2016802069 hasRelatedWork W2040173848 @default.
- W2016802069 hasRelatedWork W2048994850 @default.
- W2016802069 hasRelatedWork W2098939304 @default.
- W2016802069 hasRelatedWork W2362080633 @default.
- W2016802069 hasRelatedWork W2368094346 @default.
- W2016802069 hasRelatedWork W2383077658 @default.
- W2016802069 hasRelatedWork W2387231746 @default.
- W2016802069 hasRelatedWork W2387589858 @default.
- W2016802069 hasRelatedWork W2399859692 @default.
- W2016802069 hasRelatedWork W2476470546 @default.
- W2016802069 hasRelatedWork W2545848843 @default.
- W2016802069 hasRelatedWork W2734769423 @default.
- W2016802069 hasRelatedWork W3140811375 @default.
- W2016802069 hasRelatedWork W2846116878 @default.
- W2016802069 isParatext "false" @default.
- W2016802069 isRetracted "false" @default.
- W2016802069 magId "2016802069" @default.