Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016809318> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2016809318 endingPage "485" @default.
- W2016809318 startingPage "478" @default.
- W2016809318 abstract "A novel hybrid Artificial Neural Network (ANN) model, denoted GRNNFA, has been developed for fire studies. The major feature of the model is its ability to work in a noisy environment, which is usually the case with fire experiment data. The GRNNFA model is applicable in the determination of the location of the thermal interface in a single compartment fire. The performance of the GRNNFA has been proven to be comparable to that of the Computational Fluid Dynamics (CFD) model. In addition, the computational speed of the GRNNFA model is much faster than that of the CFD model. However, the original GRNNFA model is only capable of handling the training samples with scalar output. This shortcoming restricts the application area of the model. Hence, this paper presents a modification of the original GRNNFA model for multi-dimensional prediction problems. It also demonstrates the first application of ANN techniques to predicting the velocity and temperature profiles at the center of the doorway in a single compartment fire. These profiles are commonly used to benchmark the performances of CFD models. They are employed in this study to evaluate the performance of the modified GRNNFA model. The predicted profiles are compared with the experimental results and the results simulated by the CFD model. These results show that the prediction errors of the GRNNFA model are less than those of the CFD model in actual application." @default.
- W2016809318 created "2016-06-24" @default.
- W2016809318 creator A5023722015 @default.
- W2016809318 creator A5051121638 @default.
- W2016809318 creator A5057661454 @default.
- W2016809318 creator A5090768303 @default.
- W2016809318 date "2006-09-01" @default.
- W2016809318 modified "2023-10-05" @default.
- W2016809318 title "Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis" @default.
- W2016809318 cites W1601344007 @default.
- W2016809318 cites W1970364034 @default.
- W2016809318 cites W1985600477 @default.
- W2016809318 cites W2001612880 @default.
- W2016809318 cites W2012611887 @default.
- W2016809318 cites W2017598767 @default.
- W2016809318 cites W2026682229 @default.
- W2016809318 cites W2035834088 @default.
- W2016809318 cites W2042917546 @default.
- W2016809318 cites W2047212897 @default.
- W2016809318 cites W2051119799 @default.
- W2016809318 cites W2065999064 @default.
- W2016809318 cites W2066983090 @default.
- W2016809318 cites W2069395944 @default.
- W2016809318 cites W2111892434 @default.
- W2016809318 cites W2145645453 @default.
- W2016809318 cites W2149723649 @default.
- W2016809318 cites W2165199752 @default.
- W2016809318 cites W2166280719 @default.
- W2016809318 cites W3035328285 @default.
- W2016809318 doi "https://doi.org/10.1016/j.firesaf.2006.03.003" @default.
- W2016809318 hasPublicationYear "2006" @default.
- W2016809318 type Work @default.
- W2016809318 sameAs 2016809318 @default.
- W2016809318 citedByCount "40" @default.
- W2016809318 countsByYear W20168093182012 @default.
- W2016809318 countsByYear W20168093182013 @default.
- W2016809318 countsByYear W20168093182014 @default.
- W2016809318 countsByYear W20168093182015 @default.
- W2016809318 countsByYear W20168093182016 @default.
- W2016809318 countsByYear W20168093182019 @default.
- W2016809318 countsByYear W20168093182020 @default.
- W2016809318 countsByYear W20168093182021 @default.
- W2016809318 countsByYear W20168093182022 @default.
- W2016809318 countsByYear W20168093182023 @default.
- W2016809318 crossrefType "journal-article" @default.
- W2016809318 hasAuthorship W2016809318A5023722015 @default.
- W2016809318 hasAuthorship W2016809318A5051121638 @default.
- W2016809318 hasAuthorship W2016809318A5057661454 @default.
- W2016809318 hasAuthorship W2016809318A5090768303 @default.
- W2016809318 hasConcept C127413603 @default.
- W2016809318 hasConcept C13280743 @default.
- W2016809318 hasConcept C146978453 @default.
- W2016809318 hasConcept C154945302 @default.
- W2016809318 hasConcept C1633027 @default.
- W2016809318 hasConcept C185798385 @default.
- W2016809318 hasConcept C205649164 @default.
- W2016809318 hasConcept C41008148 @default.
- W2016809318 hasConcept C44154836 @default.
- W2016809318 hasConcept C50644808 @default.
- W2016809318 hasConceptScore W2016809318C127413603 @default.
- W2016809318 hasConceptScore W2016809318C13280743 @default.
- W2016809318 hasConceptScore W2016809318C146978453 @default.
- W2016809318 hasConceptScore W2016809318C154945302 @default.
- W2016809318 hasConceptScore W2016809318C1633027 @default.
- W2016809318 hasConceptScore W2016809318C185798385 @default.
- W2016809318 hasConceptScore W2016809318C205649164 @default.
- W2016809318 hasConceptScore W2016809318C41008148 @default.
- W2016809318 hasConceptScore W2016809318C44154836 @default.
- W2016809318 hasConceptScore W2016809318C50644808 @default.
- W2016809318 hasIssue "6" @default.
- W2016809318 hasLocation W20168093181 @default.
- W2016809318 hasOpenAccess W2016809318 @default.
- W2016809318 hasPrimaryLocation W20168093181 @default.
- W2016809318 hasRelatedWork W112744582 @default.
- W2016809318 hasRelatedWork W1485630101 @default.
- W2016809318 hasRelatedWork W1970733187 @default.
- W2016809318 hasRelatedWork W2386387936 @default.
- W2016809318 hasRelatedWork W2498017833 @default.
- W2016809318 hasRelatedWork W2547049329 @default.
- W2016809318 hasRelatedWork W2587471693 @default.
- W2016809318 hasRelatedWork W2899084033 @default.
- W2016809318 hasRelatedWork W2954030125 @default.
- W2016809318 hasRelatedWork W4382990354 @default.
- W2016809318 hasVolume "41" @default.
- W2016809318 isParatext "false" @default.
- W2016809318 isRetracted "false" @default.
- W2016809318 magId "2016809318" @default.
- W2016809318 workType "article" @default.