Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016825629> ?p ?o ?g. }
- W2016825629 endingPage "223" @default.
- W2016825629 startingPage "217" @default.
- W2016825629 abstract "This study was conducted to examine a current baseline profile of antimicrobial resistance and virulence of Escherichia coli isolated from foods commonly sold in the market place in Vietnam. E. coli were isolated from 180 samples of raw meat, poultry and shellfish and also isolated from 43 chicken faeces samples. Ninety-nine E. coli isolates recovered from all sources were selected for the investigation of their susceptibility to 15 antimicrobial agents by the disk diffusion method. Eighty-four percent of the isolates were resistant to one or more antibiotics, and multi-resistance, defined as resistance to at least 3 different classes of antibiotics, was detected in all sources. The rates of multi-resistance were up to 89.5% in chicken, 95% in chicken faeces and 75% in pork isolates. Resistance was most frequently observed to tetracycline (77.8%), sulfafurazole (60.6%), ampicillin (50.5%), amoxicillin (50.5%), trimethoprim (51.5%), chloramphenicol (43.4%), streptomycin (39.4%), nalidixic acid (34.3%) and gentamicin (24.2%). In addition, the isolates also displayed resistance to fluoroquinolones (ciprofloxacin 16.2%, norfloxacin 17.2%, and enrofloxacin 21.2%), with chicken isolates showing the highest rates of resistance to these antibiotics (52.6–63.2%). Thirty-eight multi-resistant isolates were selected for further the examination of antibiotic resistance genes and were also evaluated for virulence gene profiles by multiplex and uniplex polymerase chain reaction. The beta-lactam TEM gene and tetracycline resistance tetA, tetB genes were frequently detected in the tested isolates (84.2% and 89.5% respectively). Genes which are responsible for resistance to streptomycin (aadA) (68.4%), chloramphenicol (cmlA) (42.1%), sulfonamides (sulI) (39.5%), trimethoprim (dhfrV) (26.3%) and kanamycin (aphA-1) (23.7%) were also widely distributed. Plasmid-mediated ampC genes were detected in E. coli isolates from chicken and pork. The isolates were tested for the presence of 58 virulence genes for adhesins, toxins, capsule synthesis, siderophores, invasins and others from different E. coli pathotypes. All of the tested isolates contained at least one virulence gene and there were 16 genes detected. Virulence genes detected were fimH (92.1%), bmaE (84.2%), TSPE4.C2 (42.1%), aidA AIDA-I (orfB) (31.6%), east1 (26.3%), traT (23.7%), and others including fyuA, iutA, chuA, yjaA, iss, iroNE. coli, ibeA, aah (orfA), iha and papG allele III (10.5–2.6%). Typical toxin genes produced by enterohemorrhagic and enterotoxigenic E. coli pathotypes (a heat-stable toxin (ST), heat-labile toxin (LT) and Shiga toxin stx1, stx2) were not detected in any of these 38 isolates. The study has revealed that E. coli in raw foods is a significant reservoir of resistance and virulence genes." @default.
- W2016825629 created "2016-06-24" @default.
- W2016825629 creator A5053106933 @default.
- W2016825629 creator A5054816429 @default.
- W2016825629 creator A5060687140 @default.
- W2016825629 creator A5070412377 @default.
- W2016825629 creator A5080888431 @default.
- W2016825629 date "2008-06-01" @default.
- W2016825629 modified "2023-10-10" @default.
- W2016825629 title "Safety of raw meat and shellfish in Vietnam: An analysis of Escherichia coli isolations for antibiotic resistance and virulence genes" @default.
- W2016825629 cites W114796288 @default.
- W2016825629 cites W176878849 @default.
- W2016825629 cites W1794231259 @default.
- W2016825629 cites W1937272289 @default.
- W2016825629 cites W1975146233 @default.
- W2016825629 cites W1981426041 @default.
- W2016825629 cites W1987099467 @default.
- W2016825629 cites W1988516580 @default.
- W2016825629 cites W1992050568 @default.
- W2016825629 cites W2003832119 @default.
- W2016825629 cites W2006784245 @default.
- W2016825629 cites W2007740554 @default.
- W2016825629 cites W2010996628 @default.
- W2016825629 cites W2021252598 @default.
- W2016825629 cites W2022041164 @default.
- W2016825629 cites W2024924953 @default.
- W2016825629 cites W2030442343 @default.
- W2016825629 cites W2037523779 @default.
- W2016825629 cites W2038949744 @default.
- W2016825629 cites W2042498675 @default.
- W2016825629 cites W2042576866 @default.
- W2016825629 cites W2046430156 @default.
- W2016825629 cites W2049693807 @default.
- W2016825629 cites W2056221624 @default.
- W2016825629 cites W2080681701 @default.
- W2016825629 cites W2084599172 @default.
- W2016825629 cites W2092938807 @default.
- W2016825629 cites W2095655760 @default.
- W2016825629 cites W2095969400 @default.
- W2016825629 cites W2096550090 @default.
- W2016825629 cites W2098896577 @default.
- W2016825629 cites W2099001508 @default.
- W2016825629 cites W2099943446 @default.
- W2016825629 cites W2104888786 @default.
- W2016825629 cites W2112111992 @default.
- W2016825629 cites W2113790776 @default.
- W2016825629 cites W2121758547 @default.
- W2016825629 cites W2123001116 @default.
- W2016825629 cites W2128289836 @default.
- W2016825629 cites W2129825395 @default.
- W2016825629 cites W2134581253 @default.
- W2016825629 cites W2137252923 @default.
- W2016825629 cites W2138139644 @default.
- W2016825629 cites W2140713715 @default.
- W2016825629 cites W2145195450 @default.
- W2016825629 cites W2152268559 @default.
- W2016825629 cites W2156962949 @default.
- W2016825629 cites W2160555071 @default.
- W2016825629 cites W2160625187 @default.
- W2016825629 cites W2160688533 @default.
- W2016825629 cites W2162987252 @default.
- W2016825629 cites W2163287914 @default.
- W2016825629 cites W2163338340 @default.
- W2016825629 cites W2260469692 @default.
- W2016825629 cites W4243575454 @default.
- W2016825629 doi "https://doi.org/10.1016/j.ijfoodmicro.2008.03.029" @default.
- W2016825629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18457892" @default.
- W2016825629 hasPublicationYear "2008" @default.
- W2016825629 type Work @default.
- W2016825629 sameAs 2016825629 @default.
- W2016825629 citedByCount "255" @default.
- W2016825629 countsByYear W20168256292012 @default.
- W2016825629 countsByYear W20168256292013 @default.
- W2016825629 countsByYear W20168256292014 @default.
- W2016825629 countsByYear W20168256292015 @default.
- W2016825629 countsByYear W20168256292016 @default.
- W2016825629 countsByYear W20168256292017 @default.
- W2016825629 countsByYear W20168256292018 @default.
- W2016825629 countsByYear W20168256292019 @default.
- W2016825629 countsByYear W20168256292020 @default.
- W2016825629 countsByYear W20168256292021 @default.
- W2016825629 countsByYear W20168256292022 @default.
- W2016825629 countsByYear W20168256292023 @default.
- W2016825629 crossrefType "journal-article" @default.
- W2016825629 hasAuthorship W2016825629A5053106933 @default.
- W2016825629 hasAuthorship W2016825629A5054816429 @default.
- W2016825629 hasAuthorship W2016825629A5060687140 @default.
- W2016825629 hasAuthorship W2016825629A5070412377 @default.
- W2016825629 hasAuthorship W2016825629A5080888431 @default.
- W2016825629 hasConcept C104317684 @default.
- W2016825629 hasConcept C133936738 @default.
- W2016825629 hasConcept C2775832221 @default.
- W2016825629 hasConcept C2775843808 @default.
- W2016825629 hasConcept C2775876089 @default.
- W2016825629 hasConcept C2776021129 @default.
- W2016825629 hasConcept C2778473333 @default.
- W2016825629 hasConcept C2778512257 @default.
- W2016825629 hasConcept C2779906673 @default.