Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016831795> ?p ?o ?g. }
- W2016831795 endingPage "220" @default.
- W2016831795 startingPage "212" @default.
- W2016831795 abstract "Generally, sampling size is optimised considering a single specific constraint. However, for financial reasons, only one sample is usually defined and used to satisfy several objectives. It is therefore crucial to choose a sample that meets all the required objectives. This paper proposes an original method for optimising a sample plan to monitor allergen traces in products consumed by allergy sufferers. The proposed method, based on a Bayesian network, enables several different constraints to be considered within a single model and the integration of literature data on concentration levels of allergen traces in food. Moreover, the construction of a three-stage sampling plan took into account the consumption preferences of peanut allergy sufferers between products with or without labels on the presence of allergen traces, and between the categories and subcategories of products. This method was applied to data from the MIRABEL project which aims to assess risks related to peanut traces for French allergy sufferers. The results show how the model used all the available information and constraints to balance the total number of samples set at 900 for food categories/subcategories and labelling types. As required, the model favoured the most consumed product categories and subcategories. At the same time, it increased the number of samples when peanut concentration is low. This helps reduce the uncertainty on peanut concentrations in these products and consequently on risk estimation. In conclusion, the proposed method is a useful tool for public administrations, risk assessors and risk managers to improve sampling plans for monitoring allergen traces or other health hazards in food." @default.
- W2016831795 created "2016-06-24" @default.
- W2016831795 creator A5011012303 @default.
- W2016831795 creator A5025973236 @default.
- W2016831795 creator A5036555195 @default.
- W2016831795 creator A5037277823 @default.
- W2016831795 date "2015-01-01" @default.
- W2016831795 modified "2023-10-16" @default.
- W2016831795 title "A Bayesian network to optimise sample size for food allergen monitoring" @default.
- W2016831795 cites W1505256426 @default.
- W2016831795 cites W1978926753 @default.
- W2016831795 cites W1979080176 @default.
- W2016831795 cites W1984858150 @default.
- W2016831795 cites W1987856320 @default.
- W2016831795 cites W1993284183 @default.
- W2016831795 cites W1995348800 @default.
- W2016831795 cites W1997182468 @default.
- W2016831795 cites W2000132463 @default.
- W2016831795 cites W2000617150 @default.
- W2016831795 cites W2004276744 @default.
- W2016831795 cites W2019456683 @default.
- W2016831795 cites W2033751720 @default.
- W2016831795 cites W2036136173 @default.
- W2016831795 cites W2041594259 @default.
- W2016831795 cites W2048977064 @default.
- W2016831795 cites W2054171853 @default.
- W2016831795 cites W2054785286 @default.
- W2016831795 cites W2074319784 @default.
- W2016831795 cites W20745323 @default.
- W2016831795 cites W2085234022 @default.
- W2016831795 cites W2088723257 @default.
- W2016831795 cites W2102735329 @default.
- W2016831795 cites W2104802908 @default.
- W2016831795 cites W2108179539 @default.
- W2016831795 cites W2134012062 @default.
- W2016831795 cites W2237119769 @default.
- W2016831795 cites W2284627217 @default.
- W2016831795 cites W2464898789 @default.
- W2016831795 cites W4323283741 @default.
- W2016831795 doi "https://doi.org/10.1016/j.foodcont.2014.06.039" @default.
- W2016831795 hasPublicationYear "2015" @default.
- W2016831795 type Work @default.
- W2016831795 sameAs 2016831795 @default.
- W2016831795 citedByCount "13" @default.
- W2016831795 countsByYear W20168317952015 @default.
- W2016831795 countsByYear W20168317952017 @default.
- W2016831795 countsByYear W20168317952018 @default.
- W2016831795 countsByYear W20168317952019 @default.
- W2016831795 countsByYear W20168317952020 @default.
- W2016831795 countsByYear W20168317952021 @default.
- W2016831795 countsByYear W20168317952022 @default.
- W2016831795 countsByYear W20168317952023 @default.
- W2016831795 crossrefType "journal-article" @default.
- W2016831795 hasAuthorship W2016831795A5011012303 @default.
- W2016831795 hasAuthorship W2016831795A5025973236 @default.
- W2016831795 hasAuthorship W2016831795A5036555195 @default.
- W2016831795 hasAuthorship W2016831795A5037277823 @default.
- W2016831795 hasConcept C105795698 @default.
- W2016831795 hasConcept C106131492 @default.
- W2016831795 hasConcept C107673813 @default.
- W2016831795 hasConcept C112930515 @default.
- W2016831795 hasConcept C119857082 @default.
- W2016831795 hasConcept C124101348 @default.
- W2016831795 hasConcept C129848803 @default.
- W2016831795 hasConcept C140779682 @default.
- W2016831795 hasConcept C144024400 @default.
- W2016831795 hasConcept C154945302 @default.
- W2016831795 hasConcept C177264268 @default.
- W2016831795 hasConcept C185592680 @default.
- W2016831795 hasConcept C198531522 @default.
- W2016831795 hasConcept C199360897 @default.
- W2016831795 hasConcept C203014093 @default.
- W2016831795 hasConcept C207480886 @default.
- W2016831795 hasConcept C2780510475 @default.
- W2016831795 hasConcept C30772137 @default.
- W2016831795 hasConcept C31972630 @default.
- W2016831795 hasConcept C33724603 @default.
- W2016831795 hasConcept C33923547 @default.
- W2016831795 hasConcept C36289849 @default.
- W2016831795 hasConcept C41008148 @default.
- W2016831795 hasConcept C43617362 @default.
- W2016831795 hasConcept C71924100 @default.
- W2016831795 hasConceptScore W2016831795C105795698 @default.
- W2016831795 hasConceptScore W2016831795C106131492 @default.
- W2016831795 hasConceptScore W2016831795C107673813 @default.
- W2016831795 hasConceptScore W2016831795C112930515 @default.
- W2016831795 hasConceptScore W2016831795C119857082 @default.
- W2016831795 hasConceptScore W2016831795C124101348 @default.
- W2016831795 hasConceptScore W2016831795C129848803 @default.
- W2016831795 hasConceptScore W2016831795C140779682 @default.
- W2016831795 hasConceptScore W2016831795C144024400 @default.
- W2016831795 hasConceptScore W2016831795C154945302 @default.
- W2016831795 hasConceptScore W2016831795C177264268 @default.
- W2016831795 hasConceptScore W2016831795C185592680 @default.
- W2016831795 hasConceptScore W2016831795C198531522 @default.
- W2016831795 hasConceptScore W2016831795C199360897 @default.
- W2016831795 hasConceptScore W2016831795C203014093 @default.
- W2016831795 hasConceptScore W2016831795C207480886 @default.