Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016883306> ?p ?o ?g. }
- W2016883306 endingPage "676" @default.
- W2016883306 startingPage "671" @default.
- W2016883306 abstract "In this paper, we introduce a novel modeling technique to reduce the time associated with cycle-accurate simulation of parallel applications deployed on many-core embedded platforms. We introduce an ensemble model based on artificial neural networks that exploits (in the training phase) multiple levels of simulation abstraction, from cycle-accurate to cycle-approximate, to predict the cycle-accurate results for unknown application configurations. We show that high-level modeling can be used to significantly reduce the number of low-level model evaluations provided that a suitable artificial neural network is used to aggregate the results. We propose a methodology for the design and optimization of such an ensemble model and we assess the proposed approach for an industrial simulation framework based on STMicroelectronics STHORM (P2012) many-core computing fabric." @default.
- W2016883306 created "2016-06-24" @default.
- W2016883306 creator A5017280720 @default.
- W2016883306 creator A5019483512 @default.
- W2016883306 creator A5031461662 @default.
- W2016883306 creator A5035926560 @default.
- W2016883306 creator A5078686831 @default.
- W2016883306 creator A5083013130 @default.
- W2016883306 creator A5086350616 @default.
- W2016883306 date "2013-03-18" @default.
- W2016883306 modified "2023-09-23" @default.
- W2016883306 title "Improving simulation speed and accuracy for many-core embedded platforms with ensemble models" @default.
- W2016883306 cites W1521471062 @default.
- W2016883306 cites W1540027087 @default.
- W2016883306 cites W1569753066 @default.
- W2016883306 cites W1964978749 @default.
- W2016883306 cites W1991849527 @default.
- W2016883306 cites W2054613700 @default.
- W2016883306 cites W2068371654 @default.
- W2016883306 cites W2096858484 @default.
- W2016883306 cites W2097197938 @default.
- W2016883306 cites W2100805904 @default.
- W2016883306 cites W2112096947 @default.
- W2016883306 cites W2130096537 @default.
- W2016883306 cites W2130440712 @default.
- W2016883306 cites W2132219981 @default.
- W2016883306 cites W2145180784 @default.
- W2016883306 cites W2157070686 @default.
- W2016883306 cites W2168361773 @default.
- W2016883306 cites W2341535507 @default.
- W2016883306 cites W28412257 @default.
- W2016883306 doi "https://doi.org/10.5555/2485288.2485452" @default.
- W2016883306 hasPublicationYear "2013" @default.
- W2016883306 type Work @default.
- W2016883306 sameAs 2016883306 @default.
- W2016883306 citedByCount "3" @default.
- W2016883306 countsByYear W20168833062015 @default.
- W2016883306 countsByYear W20168833062019 @default.
- W2016883306 countsByYear W20168833062020 @default.
- W2016883306 crossrefType "proceedings-article" @default.
- W2016883306 hasAuthorship W2016883306A5017280720 @default.
- W2016883306 hasAuthorship W2016883306A5019483512 @default.
- W2016883306 hasAuthorship W2016883306A5031461662 @default.
- W2016883306 hasAuthorship W2016883306A5035926560 @default.
- W2016883306 hasAuthorship W2016883306A5078686831 @default.
- W2016883306 hasAuthorship W2016883306A5083013130 @default.
- W2016883306 hasAuthorship W2016883306A5086350616 @default.
- W2016883306 hasConcept C111472728 @default.
- W2016883306 hasConcept C119898033 @default.
- W2016883306 hasConcept C124304363 @default.
- W2016883306 hasConcept C138885662 @default.
- W2016883306 hasConcept C147358964 @default.
- W2016883306 hasConcept C154945302 @default.
- W2016883306 hasConcept C159985019 @default.
- W2016883306 hasConcept C165696696 @default.
- W2016883306 hasConcept C173608175 @default.
- W2016883306 hasConcept C192562407 @default.
- W2016883306 hasConcept C199360897 @default.
- W2016883306 hasConcept C2164484 @default.
- W2016883306 hasConcept C2777904410 @default.
- W2016883306 hasConcept C38652104 @default.
- W2016883306 hasConcept C41008148 @default.
- W2016883306 hasConcept C45942800 @default.
- W2016883306 hasConcept C4679612 @default.
- W2016883306 hasConcept C50644808 @default.
- W2016883306 hasConcept C76155785 @default.
- W2016883306 hasConcept C78766204 @default.
- W2016883306 hasConceptScore W2016883306C111472728 @default.
- W2016883306 hasConceptScore W2016883306C119898033 @default.
- W2016883306 hasConceptScore W2016883306C124304363 @default.
- W2016883306 hasConceptScore W2016883306C138885662 @default.
- W2016883306 hasConceptScore W2016883306C147358964 @default.
- W2016883306 hasConceptScore W2016883306C154945302 @default.
- W2016883306 hasConceptScore W2016883306C159985019 @default.
- W2016883306 hasConceptScore W2016883306C165696696 @default.
- W2016883306 hasConceptScore W2016883306C173608175 @default.
- W2016883306 hasConceptScore W2016883306C192562407 @default.
- W2016883306 hasConceptScore W2016883306C199360897 @default.
- W2016883306 hasConceptScore W2016883306C2164484 @default.
- W2016883306 hasConceptScore W2016883306C2777904410 @default.
- W2016883306 hasConceptScore W2016883306C38652104 @default.
- W2016883306 hasConceptScore W2016883306C41008148 @default.
- W2016883306 hasConceptScore W2016883306C45942800 @default.
- W2016883306 hasConceptScore W2016883306C4679612 @default.
- W2016883306 hasConceptScore W2016883306C50644808 @default.
- W2016883306 hasConceptScore W2016883306C76155785 @default.
- W2016883306 hasConceptScore W2016883306C78766204 @default.
- W2016883306 hasLocation W20168833061 @default.
- W2016883306 hasOpenAccess W2016883306 @default.
- W2016883306 hasPrimaryLocation W20168833061 @default.
- W2016883306 hasRelatedWork W1486246018 @default.
- W2016883306 hasRelatedWork W1908051289 @default.
- W2016883306 hasRelatedWork W1982688261 @default.
- W2016883306 hasRelatedWork W1991466305 @default.
- W2016883306 hasRelatedWork W2066374917 @default.
- W2016883306 hasRelatedWork W2116504089 @default.
- W2016883306 hasRelatedWork W2163128839 @default.
- W2016883306 hasRelatedWork W2174359188 @default.