Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016920637> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2016920637 endingPage "489" @default.
- W2016920637 startingPage "463" @default.
- W2016920637 abstract "In a recent paper by Lawrence & Weinbaum (1986) an unexpected new behaviour was discovered for a nearly spherical body executing harmonic oscillations in unsteady Stokes flow. The force was not a simple quadratic function in half-integer powers of the frequency parameter λ 2 = −i a 2 ω/ν, as in the classical solution of Stokes (1851) for a sphere, and the force for an arbitrary velocity U ( t ) contained a new memory integral whose kernel differed from the classical t −½ behaviour derived by Basset (1888) for a sphere. A more general analysis of the unsteady Stokes equations is presented herein for the axisymmetric flow past a spheroidal body to elucidate the behaviour of the force at arbitrary aspect ratio. Perturbation solutions in the frequency parameter λ are first obtained for a spheroid in the limit of low- and high-frequency oscillations. These solutions show that in contrast to a sphere the first order corrections for the component of the drag force that is proportional to the first power of λ exhibit a different behaviour in the extreme cases of the steady Stokes flow and inviscid limits. Exact solutions are presented for the middle frequency range in terms of spheroidal wave functions and these results are interpreted in terms of the analytic solutions for the asymptotic behaviour. It is shown that the force on a body can be represented in terms of four contributions; the classical Stokes and virtual mass forces; a newly defined generalized Basset force proportional to λ whose coefficient is a function of body geometry derived from the perturbation solution for high frequency; and a fourth term which combines frequency and geometry in a more general way. In view of the complexity of this fourth term, a relatively simple correlation is proposed which provides good accuracy for all aspect ratios in the range 0.1 < b/ a < 10 where exact solutions were calculated and for all values of λ. Furthermore, the correlation has a simple inverse Laplace transform, so that the force may be found for an arbitrary velocity U ( t ) of the spheroid. The new fourth term transforms to a memory integral whose kernel is either bounded or has a weaker singularity than the t −½ behaviour of the Basset memory integral. These results are used to propose an approximate functional form for the force on an arbitrary body in unsteady motion at low Reynolds number." @default.
- W2016920637 created "2016-06-24" @default.
- W2016920637 creator A5023291532 @default.
- W2016920637 creator A5058138870 @default.
- W2016920637 date "1988-04-01" @default.
- W2016920637 modified "2023-09-25" @default.
- W2016920637 title "The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid" @default.
- W2016920637 cites W1538169654 @default.
- W2016920637 cites W1556192255 @default.
- W2016920637 cites W1963604454 @default.
- W2016920637 doi "https://doi.org/10.1017/s0022112088001107" @default.
- W2016920637 hasPublicationYear "1988" @default.
- W2016920637 type Work @default.
- W2016920637 sameAs 2016920637 @default.
- W2016920637 citedByCount "79" @default.
- W2016920637 countsByYear W20169206372012 @default.
- W2016920637 countsByYear W20169206372013 @default.
- W2016920637 countsByYear W20169206372014 @default.
- W2016920637 countsByYear W20169206372015 @default.
- W2016920637 countsByYear W20169206372016 @default.
- W2016920637 countsByYear W20169206372017 @default.
- W2016920637 countsByYear W20169206372018 @default.
- W2016920637 countsByYear W20169206372019 @default.
- W2016920637 countsByYear W20169206372020 @default.
- W2016920637 countsByYear W20169206372021 @default.
- W2016920637 countsByYear W20169206372022 @default.
- W2016920637 countsByYear W20169206372023 @default.
- W2016920637 crossrefType "journal-article" @default.
- W2016920637 hasAuthorship W2016920637A5023291532 @default.
- W2016920637 hasAuthorship W2016920637A5058138870 @default.
- W2016920637 hasConcept C121332964 @default.
- W2016920637 hasConcept C122312997 @default.
- W2016920637 hasConcept C12731421 @default.
- W2016920637 hasConcept C134306372 @default.
- W2016920637 hasConcept C142479292 @default.
- W2016920637 hasConcept C182748727 @default.
- W2016920637 hasConcept C19191322 @default.
- W2016920637 hasConcept C196558001 @default.
- W2016920637 hasConcept C198394728 @default.
- W2016920637 hasConcept C24692054 @default.
- W2016920637 hasConcept C33923547 @default.
- W2016920637 hasConcept C38349280 @default.
- W2016920637 hasConcept C57879066 @default.
- W2016920637 hasConcept C62520636 @default.
- W2016920637 hasConcept C72921944 @default.
- W2016920637 hasConcept C74650414 @default.
- W2016920637 hasConcept C75816695 @default.
- W2016920637 hasConcept C86252789 @default.
- W2016920637 hasConcept C9358284 @default.
- W2016920637 hasConceptScore W2016920637C121332964 @default.
- W2016920637 hasConceptScore W2016920637C122312997 @default.
- W2016920637 hasConceptScore W2016920637C12731421 @default.
- W2016920637 hasConceptScore W2016920637C134306372 @default.
- W2016920637 hasConceptScore W2016920637C142479292 @default.
- W2016920637 hasConceptScore W2016920637C182748727 @default.
- W2016920637 hasConceptScore W2016920637C19191322 @default.
- W2016920637 hasConceptScore W2016920637C196558001 @default.
- W2016920637 hasConceptScore W2016920637C198394728 @default.
- W2016920637 hasConceptScore W2016920637C24692054 @default.
- W2016920637 hasConceptScore W2016920637C33923547 @default.
- W2016920637 hasConceptScore W2016920637C38349280 @default.
- W2016920637 hasConceptScore W2016920637C57879066 @default.
- W2016920637 hasConceptScore W2016920637C62520636 @default.
- W2016920637 hasConceptScore W2016920637C72921944 @default.
- W2016920637 hasConceptScore W2016920637C74650414 @default.
- W2016920637 hasConceptScore W2016920637C75816695 @default.
- W2016920637 hasConceptScore W2016920637C86252789 @default.
- W2016920637 hasConceptScore W2016920637C9358284 @default.
- W2016920637 hasLocation W20169206371 @default.
- W2016920637 hasOpenAccess W2016920637 @default.
- W2016920637 hasPrimaryLocation W20169206371 @default.
- W2016920637 hasRelatedWork W1536421322 @default.
- W2016920637 hasRelatedWork W1978784825 @default.
- W2016920637 hasRelatedWork W2016920637 @default.
- W2016920637 hasRelatedWork W2025639889 @default.
- W2016920637 hasRelatedWork W2065656653 @default.
- W2016920637 hasRelatedWork W2098772492 @default.
- W2016920637 hasRelatedWork W2274768648 @default.
- W2016920637 hasRelatedWork W2740959400 @default.
- W2016920637 hasRelatedWork W40118191 @default.
- W2016920637 hasRelatedWork W943114715 @default.
- W2016920637 hasVolume "189" @default.
- W2016920637 isParatext "false" @default.
- W2016920637 isRetracted "false" @default.
- W2016920637 magId "2016920637" @default.
- W2016920637 workType "article" @default.