Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016948269> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2016948269 abstract "Abstract The rock mechanical poromechanics pressure property, or Biot's effective stress parameter, a, is an important rock matrix and grain characteristic. The Biot's parameter relates stress and pore pressure and weighs the effect of the pore pressure within the concept of the effective stress analysis, in the geomechanics disciplines, and in particular when applied to reservoir engineering and wellbore time-dependent drilling mechanics and stability. It measures the compressibility of the skeletal framework of the rock with respect to the solid material composing the rock. In addition, it also reflects the compressibility of the rock structure which is one of the most important parameters for predicting oil reserves. The poroelastic constant, a, is a complex function of the rock in-situ stress and porosity. The petroleum industry has historically calibrated empirical pore pressure relationships to the effective stress assuming a value of a to be unity or a constant value that may change as the reservoir is being depleted.A theoretical and experimental understanding of the measurements of the poroelastic constant, a, should improve the existing models in the areas lacking the data necessary for an accurate calibration. The paper discusses the various methods of measuring the rock poroelastic parameter, a. These methods include quasi-static and acoustic approaches. In the quasi-static approach, two experimental set-ups, known as the direct and indirect methods, were used in this study to determine a, compared simultaneously with the acoustic method which is based on the compressional and shear wave velocities measurements under hydrostatic loading. The direct method using the quasi-static approach utilizes the measurements of the change in pore volume and bulk volume of the sample for the calculation of a while the indirect method uses the bulk modulus of the fluid saturated rock sample and solid grains in the computation of a.The acoustic approach of measuring a utilizes the measurements of both compressional and shear wave velocities to compute bulk modulus which is then used to compute a; thus, very similar to the indirect technique. The measurements of a using these approaches were performed on fluid-saturated Berea cores, with mineral oil as the saturating fluid. The results obtained from these various techniques are discussed in this work. The indirect method reveals a higher magnitude of the poroelastic constant, a, compared with direct method measurements[1].This difference was found to be large for samples with high porosity, while for low porosity samples the magnitude for the poroelastic constant, a, measured using the two methods was comparable.This is due the fact that low porosity samples have high bulk modulus which tends to lower the magnitude of the poroelastic constant, a, when using the indirect method.The acoustic measurements showed the sensitivity of a to the stress level at which it was measured. The magnitude of the poroelastic constant, a, dropped by 20% for some samples when the pressure increased from 1000 to 9000 psi[2,3].The results of this work also indicate that the measurements of the poroelastic constant, a, using the direct method and acoustic method at early pressure are quite similar for the case of low porosity sample.For high porosity samples the magnitude of the poroelastic constant, a, measured from direct methods was found to fall in the range of acoustic measurements at high pressure. The quasi-static direct method showed a good prediction of a in the absence of the jacketing effect." @default.
- W2016948269 created "2016-06-24" @default.
- W2016948269 creator A5040418723 @default.
- W2016948269 creator A5045919903 @default.
- W2016948269 creator A5064948760 @default.
- W2016948269 date "2005-10-09" @default.
- W2016948269 modified "2023-09-26" @default.
- W2016948269 title "Acoustic and Quasistatic Laboratory Measurement and Calibration of the Pore Pressure Prediction Coefficient in the Poroelastic Theory" @default.
- W2016948269 cites W1977727715 @default.
- W2016948269 cites W2017218088 @default.
- W2016948269 cites W2055072688 @default.
- W2016948269 cites W2276528930 @default.
- W2016948269 cites W2522907458 @default.
- W2016948269 cites W589949662 @default.
- W2016948269 doi "https://doi.org/10.2118/95825-ms" @default.
- W2016948269 hasPublicationYear "2005" @default.
- W2016948269 type Work @default.
- W2016948269 sameAs 2016948269 @default.
- W2016948269 citedByCount "9" @default.
- W2016948269 countsByYear W20169482692016 @default.
- W2016948269 countsByYear W20169482692018 @default.
- W2016948269 countsByYear W20169482692020 @default.
- W2016948269 crossrefType "proceedings-article" @default.
- W2016948269 hasAuthorship W2016948269A5040418723 @default.
- W2016948269 hasAuthorship W2016948269A5045919903 @default.
- W2016948269 hasAuthorship W2016948269A5064948760 @default.
- W2016948269 hasConcept C102579867 @default.
- W2016948269 hasConcept C105569014 @default.
- W2016948269 hasConcept C115341296 @default.
- W2016948269 hasConcept C121332964 @default.
- W2016948269 hasConcept C127313418 @default.
- W2016948269 hasConcept C134853933 @default.
- W2016948269 hasConcept C138885662 @default.
- W2016948269 hasConcept C181965411 @default.
- W2016948269 hasConcept C185715996 @default.
- W2016948269 hasConcept C187320778 @default.
- W2016948269 hasConcept C192562407 @default.
- W2016948269 hasConcept C21036866 @default.
- W2016948269 hasConcept C41895202 @default.
- W2016948269 hasConcept C4708273 @default.
- W2016948269 hasConcept C57879066 @default.
- W2016948269 hasConcept C62520636 @default.
- W2016948269 hasConcept C6648577 @default.
- W2016948269 hasConcept C84655787 @default.
- W2016948269 hasConcept C85676937 @default.
- W2016948269 hasConcept C97355855 @default.
- W2016948269 hasConceptScore W2016948269C102579867 @default.
- W2016948269 hasConceptScore W2016948269C105569014 @default.
- W2016948269 hasConceptScore W2016948269C115341296 @default.
- W2016948269 hasConceptScore W2016948269C121332964 @default.
- W2016948269 hasConceptScore W2016948269C127313418 @default.
- W2016948269 hasConceptScore W2016948269C134853933 @default.
- W2016948269 hasConceptScore W2016948269C138885662 @default.
- W2016948269 hasConceptScore W2016948269C181965411 @default.
- W2016948269 hasConceptScore W2016948269C185715996 @default.
- W2016948269 hasConceptScore W2016948269C187320778 @default.
- W2016948269 hasConceptScore W2016948269C192562407 @default.
- W2016948269 hasConceptScore W2016948269C21036866 @default.
- W2016948269 hasConceptScore W2016948269C41895202 @default.
- W2016948269 hasConceptScore W2016948269C4708273 @default.
- W2016948269 hasConceptScore W2016948269C57879066 @default.
- W2016948269 hasConceptScore W2016948269C62520636 @default.
- W2016948269 hasConceptScore W2016948269C6648577 @default.
- W2016948269 hasConceptScore W2016948269C84655787 @default.
- W2016948269 hasConceptScore W2016948269C85676937 @default.
- W2016948269 hasConceptScore W2016948269C97355855 @default.
- W2016948269 hasLocation W20169482691 @default.
- W2016948269 hasOpenAccess W2016948269 @default.
- W2016948269 hasPrimaryLocation W20169482691 @default.
- W2016948269 hasRelatedWork W1274758389 @default.
- W2016948269 hasRelatedWork W1887743915 @default.
- W2016948269 hasRelatedWork W2000300513 @default.
- W2016948269 hasRelatedWork W2003614235 @default.
- W2016948269 hasRelatedWork W2016948269 @default.
- W2016948269 hasRelatedWork W2084027138 @default.
- W2016948269 hasRelatedWork W2088192161 @default.
- W2016948269 hasRelatedWork W2107475141 @default.
- W2016948269 hasRelatedWork W2358313166 @default.
- W2016948269 hasRelatedWork W4364381257 @default.
- W2016948269 isParatext "false" @default.
- W2016948269 isRetracted "false" @default.
- W2016948269 magId "2016948269" @default.
- W2016948269 workType "article" @default.