Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016952928> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2016952928 endingPage "S106" @default.
- W2016952928 startingPage "S106" @default.
- W2016952928 abstract "Purpose: Early changes in osteoarthritic (OA) knee cartilage include tissue swelling and softening, which may predispose cartilage to mechanical damage during activities of daily living. Current clinical OA diagnosis relies on radiographic bone morphology change and pain, which can be insensitive to early change. Developing a marker that specifically targets early mechanical tissue changes may advance the current state of OA assessment. Potential candidates for such markers are in-vivo magnitude and rate of tibiofemoral (TF) soft tissue deformation during weight bearing (compression) and unloading (recovery). Respective joint “signatures” for healthy and OA groups may then allow for early OA identification. Dual Fluoroscopy (DF) is an emerging tool with the potential to provide the temporal and spatial resolutions necessary for such assessment. Tissue deformation mechanics may be derived using translation and rotation changes of the femur with respect to the tibia over time. Using a bead tracking technique, similar to radiostereometric analysis (RSA), translation changes of 0.05 mm (1/10th expected maximal cartilage deformation) have previously been accurately detected. It is however unknown if a non-invasive markerless DF approach is sufficiently accurate and precise for quantifying the small changes during weight bearing. The purpose of this study was to establish the Minimum Detectable Displacement (MDD) of 3D femoral translations with respect to the tibia in a custom built DF system using a markerless shape matching image registration approach. Methods: The DF system consisted of two X-ray tubes (Varian, USA) and generators (EMD, Canada), quad mode image intensifiers (Toshiba, Japan) and high speed digital video cameras (PCO, Germany). DF images were acquired with an entrance field diameter of 228 mm and 0.155 x 0.155 mm2 pixel resolution. Dry tibia and femur bones were fixed to a plexiglass frame, where the tibia remained stationary and the femur was translated using a digital micrometer (Mitutoyo, Japan). The frame was placed within the DF field-of-view and did not move during data capture. Ten displacement intervals (0.01-0.1 mm) were imaged with 10 repetitions of each interval. DF calibration was performed using a calibration cube and modified direct linear transform. Images were distortion corrected using a perforated steel grid and XrayProject (Brown University, USA). 3D femur and tibia bone models were generated using segmentation (Amira, USA) of Computed Tomography image sequences (0.21 x 0.21 x 0.31 mm). 3D bone orientations were obtained by three raters using AutoScoper (Brown University, USA) and a markerless shape matching approach. Bone-specific models were positioned to align their visible features to those of the underlying 2D X-ray images. Relative femur and tibia displacements were obtained using the Euclidean distance between bone models. Independent samples t-tests were used to detect MDDs of the moving femur relative to the stationary tibia at each displacement interval. Accuracy and precision were computed as means and standard deviations of the absolute differences of the femur translations compared to the micrometer displacements. Inter-rater reliability values of the femur were computed using intra-class correlation coefficient (ICC). All statistical analyses were performed in SPSS (IBM, USA) and p ≤ 0.05. Results: Femur displacement measurements were significantly different from tibia (p<0.045) and had greater than 95% confidence in accuracy at micrometer displacements ≥ 0.:08mm (accuracy ± precision: 0.022 ± 0.019) (Figure 1). Between raters femur displacement measurements were not significant for micrometer displacements ≥ 0.:05mm and inter-rater reliability across all displacements was 92%. Conclusions: These findings indicate that 3D bone translations within relevant in-vivo ranges can be observed accurately and precisely using a markerless DF shape matching approach. Femur displacements of ≥ 0.:08mm were accurately and reliably detected with respect to set micrometer displacements. The data further indicated good between rater agreement when quantifying femur displacements. Given the above system specifications, the markerless DF approach provides a means for non-invasive in-vivo quantification of TF tissue response to loading and unloading stimuli. Using this approach, further work will be performed to establish the mechanical behaviour of TF soft tissues of healthy and ligament deficient and OA knees. While significant user input is required, compared to RSA type techniques, this non-invasive approach may be more readily applied in a future clinical setting." @default.
- W2016952928 created "2016-06-24" @default.
- W2016952928 creator A5004256565 @default.
- W2016952928 creator A5037091025 @default.
- W2016952928 creator A5038181772 @default.
- W2016952928 creator A5048187874 @default.
- W2016952928 creator A5059205436 @default.
- W2016952928 date "2014-04-01" @default.
- W2016952928 modified "2023-10-16" @default.
- W2016952928 title "Inter-rater accuracy and precision of markerless quantification of 3d tibiofemoral displacement using dual fluoroscopy" @default.
- W2016952928 doi "https://doi.org/10.1016/j.joca.2014.02.199" @default.
- W2016952928 hasPublicationYear "2014" @default.
- W2016952928 type Work @default.
- W2016952928 sameAs 2016952928 @default.
- W2016952928 citedByCount "1" @default.
- W2016952928 countsByYear W20169529282023 @default.
- W2016952928 crossrefType "journal-article" @default.
- W2016952928 hasAuthorship W2016952928A5004256565 @default.
- W2016952928 hasAuthorship W2016952928A5037091025 @default.
- W2016952928 hasAuthorship W2016952928A5038181772 @default.
- W2016952928 hasAuthorship W2016952928A5048187874 @default.
- W2016952928 hasAuthorship W2016952928A5059205436 @default.
- W2016952928 hasBestOaLocation W20169529281 @default.
- W2016952928 hasConcept C104317684 @default.
- W2016952928 hasConcept C105580179 @default.
- W2016952928 hasConcept C105702510 @default.
- W2016952928 hasConcept C107551265 @default.
- W2016952928 hasConcept C126838900 @default.
- W2016952928 hasConcept C136229726 @default.
- W2016952928 hasConcept C136948725 @default.
- W2016952928 hasConcept C141071460 @default.
- W2016952928 hasConcept C142724271 @default.
- W2016952928 hasConcept C149364088 @default.
- W2016952928 hasConcept C15744967 @default.
- W2016952928 hasConcept C185592680 @default.
- W2016952928 hasConcept C204787440 @default.
- W2016952928 hasConcept C2776164576 @default.
- W2016952928 hasConcept C2776805002 @default.
- W2016952928 hasConcept C2777236700 @default.
- W2016952928 hasConcept C2780204347 @default.
- W2016952928 hasConcept C2780550940 @default.
- W2016952928 hasConcept C2780554211 @default.
- W2016952928 hasConcept C2908736133 @default.
- W2016952928 hasConcept C29694066 @default.
- W2016952928 hasConcept C36454342 @default.
- W2016952928 hasConcept C41008148 @default.
- W2016952928 hasConcept C542102704 @default.
- W2016952928 hasConcept C55493867 @default.
- W2016952928 hasConcept C71924100 @default.
- W2016952928 hasConceptScore W2016952928C104317684 @default.
- W2016952928 hasConceptScore W2016952928C105580179 @default.
- W2016952928 hasConceptScore W2016952928C105702510 @default.
- W2016952928 hasConceptScore W2016952928C107551265 @default.
- W2016952928 hasConceptScore W2016952928C126838900 @default.
- W2016952928 hasConceptScore W2016952928C136229726 @default.
- W2016952928 hasConceptScore W2016952928C136948725 @default.
- W2016952928 hasConceptScore W2016952928C141071460 @default.
- W2016952928 hasConceptScore W2016952928C142724271 @default.
- W2016952928 hasConceptScore W2016952928C149364088 @default.
- W2016952928 hasConceptScore W2016952928C15744967 @default.
- W2016952928 hasConceptScore W2016952928C185592680 @default.
- W2016952928 hasConceptScore W2016952928C204787440 @default.
- W2016952928 hasConceptScore W2016952928C2776164576 @default.
- W2016952928 hasConceptScore W2016952928C2776805002 @default.
- W2016952928 hasConceptScore W2016952928C2777236700 @default.
- W2016952928 hasConceptScore W2016952928C2780204347 @default.
- W2016952928 hasConceptScore W2016952928C2780550940 @default.
- W2016952928 hasConceptScore W2016952928C2780554211 @default.
- W2016952928 hasConceptScore W2016952928C2908736133 @default.
- W2016952928 hasConceptScore W2016952928C29694066 @default.
- W2016952928 hasConceptScore W2016952928C36454342 @default.
- W2016952928 hasConceptScore W2016952928C41008148 @default.
- W2016952928 hasConceptScore W2016952928C542102704 @default.
- W2016952928 hasConceptScore W2016952928C55493867 @default.
- W2016952928 hasConceptScore W2016952928C71924100 @default.
- W2016952928 hasLocation W20169529281 @default.
- W2016952928 hasOpenAccess W2016952928 @default.
- W2016952928 hasPrimaryLocation W20169529281 @default.
- W2016952928 hasRelatedWork W1541083237 @default.
- W2016952928 hasRelatedWork W2001422824 @default.
- W2016952928 hasRelatedWork W2038808009 @default.
- W2016952928 hasRelatedWork W2079404623 @default.
- W2016952928 hasRelatedWork W2160920777 @default.
- W2016952928 hasRelatedWork W2319401670 @default.
- W2016952928 hasRelatedWork W2393840612 @default.
- W2016952928 hasRelatedWork W2526688403 @default.
- W2016952928 hasRelatedWork W2757899619 @default.
- W2016952928 hasRelatedWork W2804586097 @default.
- W2016952928 hasVolume "22" @default.
- W2016952928 isParatext "false" @default.
- W2016952928 isRetracted "false" @default.
- W2016952928 magId "2016952928" @default.
- W2016952928 workType "article" @default.