Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016975922> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2016975922 endingPage "702" @default.
- W2016975922 startingPage "691" @default.
- W2016975922 abstract "We propose a new scheme for the replacement of cache lines in high performance computer systems. Preliminary research, to date, indicates that neural networks (NNs) have great potential in the area of statistical predictions [1]. This attribute of neural networks is used in our work to develop a neural network-based replacement policy which can effectively eliminate dead lines from the cache memory by predicting the sequence of memory addresses referenced by the central processing unit (CPU) of a computer system. The proposed strategy may, therefore, provide better cache performance as compared to the conventional schemes, such as: LRU (Least Recently Used), FIFO (First In First Out), and MRU (Most Recently Used) algorithms. In fact, we observed from the simulation experiments that a carefully designed neural network-based replacement scheme does provide excellent performance as compared to the LRU scheme. The new approach can be applied to the page replacement and prefetching algorithms in virtual memory systems." @default.
- W2016975922 created "2016-06-24" @default.
- W2016975922 creator A5034700367 @default.
- W2016975922 date "1996-06-01" @default.
- W2016975922 modified "2023-09-23" @default.
- W2016975922 title "A neural network-based replacement strategy for high performance computer architectures" @default.
- W2016975922 cites W1855438859 @default.
- W2016975922 cites W1993988399 @default.
- W2016975922 cites W2026919075 @default.
- W2016975922 cites W2050915056 @default.
- W2016975922 cites W2056971515 @default.
- W2016975922 cites W2096907974 @default.
- W2016975922 cites W2117790850 @default.
- W2016975922 cites W2121768308 @default.
- W2016975922 cites W2133671888 @default.
- W2016975922 cites W2137259109 @default.
- W2016975922 cites W2144954274 @default.
- W2016975922 cites W2157087583 @default.
- W2016975922 cites W3161713395 @default.
- W2016975922 cites W5959788 @default.
- W2016975922 doi "https://doi.org/10.1016/0165-6074(95)00030-5" @default.
- W2016975922 hasPublicationYear "1996" @default.
- W2016975922 type Work @default.
- W2016975922 sameAs 2016975922 @default.
- W2016975922 citedByCount "1" @default.
- W2016975922 countsByYear W20169759222021 @default.
- W2016975922 crossrefType "journal-article" @default.
- W2016975922 hasAuthorship W2016975922A5034700367 @default.
- W2016975922 hasConcept C111919701 @default.
- W2016975922 hasConcept C115537543 @default.
- W2016975922 hasConcept C134306372 @default.
- W2016975922 hasConcept C136085584 @default.
- W2016975922 hasConcept C154945302 @default.
- W2016975922 hasConcept C173608175 @default.
- W2016975922 hasConcept C176649486 @default.
- W2016975922 hasConcept C189783530 @default.
- W2016975922 hasConcept C2777145635 @default.
- W2016975922 hasConcept C33923547 @default.
- W2016975922 hasConcept C38556500 @default.
- W2016975922 hasConcept C41008148 @default.
- W2016975922 hasConcept C49154492 @default.
- W2016975922 hasConcept C50644808 @default.
- W2016975922 hasConcept C76399640 @default.
- W2016975922 hasConcept C77618280 @default.
- W2016975922 hasConceptScore W2016975922C111919701 @default.
- W2016975922 hasConceptScore W2016975922C115537543 @default.
- W2016975922 hasConceptScore W2016975922C134306372 @default.
- W2016975922 hasConceptScore W2016975922C136085584 @default.
- W2016975922 hasConceptScore W2016975922C154945302 @default.
- W2016975922 hasConceptScore W2016975922C173608175 @default.
- W2016975922 hasConceptScore W2016975922C176649486 @default.
- W2016975922 hasConceptScore W2016975922C189783530 @default.
- W2016975922 hasConceptScore W2016975922C2777145635 @default.
- W2016975922 hasConceptScore W2016975922C33923547 @default.
- W2016975922 hasConceptScore W2016975922C38556500 @default.
- W2016975922 hasConceptScore W2016975922C41008148 @default.
- W2016975922 hasConceptScore W2016975922C49154492 @default.
- W2016975922 hasConceptScore W2016975922C50644808 @default.
- W2016975922 hasConceptScore W2016975922C76399640 @default.
- W2016975922 hasConceptScore W2016975922C77618280 @default.
- W2016975922 hasIssue "10" @default.
- W2016975922 hasLocation W20169759221 @default.
- W2016975922 hasOpenAccess W2016975922 @default.
- W2016975922 hasPrimaryLocation W20169759221 @default.
- W2016975922 hasRelatedWork W1555315130 @default.
- W2016975922 hasRelatedWork W1579918296 @default.
- W2016975922 hasRelatedWork W1593668660 @default.
- W2016975922 hasRelatedWork W2038383407 @default.
- W2016975922 hasRelatedWork W2080181947 @default.
- W2016975922 hasRelatedWork W2121761261 @default.
- W2016975922 hasRelatedWork W2147421451 @default.
- W2016975922 hasRelatedWork W2147511796 @default.
- W2016975922 hasRelatedWork W4377007772 @default.
- W2016975922 hasRelatedWork W4383645891 @default.
- W2016975922 hasVolume "41" @default.
- W2016975922 isParatext "false" @default.
- W2016975922 isRetracted "false" @default.
- W2016975922 magId "2016975922" @default.
- W2016975922 workType "article" @default.