Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016982708> ?p ?o ?g. }
- W2016982708 endingPage "5145" @default.
- W2016982708 startingPage "5138" @default.
- W2016982708 abstract "Purpose: Microcomputed tomography (micro‐CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x‐ray attenuation to discrete levels of mineral density, typically including levels up to , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x‐ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA‐polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA‐polymer calibration phantom were compared to measurements using a conventional HA‐polymer phantom comprising and the corresponding ash density measurements on the same specimens. Results: The HA‐polymer composite phantom exhibited a nonlinear relationship between x‐ray attenuation and HA density, rather than the linear relationship typically employed a priori , and obviated the need for extrapolation, when calibrating the measured x‐ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% ( , ANCOVA) and 33% ( , Tukey's HSD), on average, respectively. The BMD and TMD of cortical bone specimens measured using the HA‐polymer phantom with an expanded range of HA density was significantly lower than the measured ash density by 8% ( , ANCOVA) and 10% ( , Tukey's HSD), on average, respectively. Conclusions: The new HA‐polymer calibration phantom with a less attenuating polymer and an expanded range of HA density resulted in a more accurate measurement of micro‐CT equivalent BMD and TMD in human cortical bone specimens compared to a conventional phantom, as verified by ash density measurements on the same specimens." @default.
- W2016982708 created "2016-06-24" @default.
- W2016982708 creator A5006492063 @default.
- W2016982708 creator A5055411404 @default.
- W2016982708 creator A5080824158 @default.
- W2016982708 creator A5089842330 @default.
- W2016982708 date "2010-08-31" @default.
- W2016982708 modified "2023-09-26" @default.
- W2016982708 title "Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom" @default.
- W2016982708 cites W1974725047 @default.
- W2016982708 cites W1976298284 @default.
- W2016982708 cites W1990838989 @default.
- W2016982708 cites W1993448754 @default.
- W2016982708 cites W1993467351 @default.
- W2016982708 cites W1996767999 @default.
- W2016982708 cites W2001374473 @default.
- W2016982708 cites W2005474867 @default.
- W2016982708 cites W2005601953 @default.
- W2016982708 cites W2010399258 @default.
- W2016982708 cites W2021082306 @default.
- W2016982708 cites W2027469592 @default.
- W2016982708 cites W2032244293 @default.
- W2016982708 cites W2036512532 @default.
- W2016982708 cites W2046354206 @default.
- W2016982708 cites W2052777858 @default.
- W2016982708 cites W2061001238 @default.
- W2016982708 cites W2064726462 @default.
- W2016982708 cites W2067581804 @default.
- W2016982708 cites W2071503181 @default.
- W2016982708 cites W2081544014 @default.
- W2016982708 cites W2104048619 @default.
- W2016982708 cites W2125532112 @default.
- W2016982708 cites W2126609373 @default.
- W2016982708 cites W2139831059 @default.
- W2016982708 cites W2148671081 @default.
- W2016982708 cites W2160080347 @default.
- W2016982708 cites W2170442655 @default.
- W2016982708 cites W4233381705 @default.
- W2016982708 doi "https://doi.org/10.1118/1.3480507" @default.
- W2016982708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20964233" @default.
- W2016982708 hasPublicationYear "2010" @default.
- W2016982708 type Work @default.
- W2016982708 sameAs 2016982708 @default.
- W2016982708 citedByCount "40" @default.
- W2016982708 countsByYear W20169827082012 @default.
- W2016982708 countsByYear W20169827082013 @default.
- W2016982708 countsByYear W20169827082014 @default.
- W2016982708 countsByYear W20169827082015 @default.
- W2016982708 countsByYear W20169827082016 @default.
- W2016982708 countsByYear W20169827082017 @default.
- W2016982708 countsByYear W20169827082018 @default.
- W2016982708 countsByYear W20169827082019 @default.
- W2016982708 countsByYear W20169827082020 @default.
- W2016982708 countsByYear W20169827082021 @default.
- W2016982708 countsByYear W20169827082022 @default.
- W2016982708 countsByYear W20169827082023 @default.
- W2016982708 crossrefType "journal-article" @default.
- W2016982708 hasAuthorship W2016982708A5006492063 @default.
- W2016982708 hasAuthorship W2016982708A5055411404 @default.
- W2016982708 hasAuthorship W2016982708A5080824158 @default.
- W2016982708 hasAuthorship W2016982708A5089842330 @default.
- W2016982708 hasConcept C104293457 @default.
- W2016982708 hasConcept C105702510 @default.
- W2016982708 hasConcept C105795698 @default.
- W2016982708 hasConcept C120665830 @default.
- W2016982708 hasConcept C121332964 @default.
- W2016982708 hasConcept C136229726 @default.
- W2016982708 hasConcept C142724271 @default.
- W2016982708 hasConcept C165838908 @default.
- W2016982708 hasConcept C184652730 @default.
- W2016982708 hasConcept C192562407 @default.
- W2016982708 hasConcept C2776541429 @default.
- W2016982708 hasConcept C2776886416 @default.
- W2016982708 hasConcept C2779329777 @default.
- W2016982708 hasConcept C2781451080 @default.
- W2016982708 hasConcept C2989005 @default.
- W2016982708 hasConcept C33923547 @default.
- W2016982708 hasConcept C71924100 @default.
- W2016982708 hasConceptScore W2016982708C104293457 @default.
- W2016982708 hasConceptScore W2016982708C105702510 @default.
- W2016982708 hasConceptScore W2016982708C105795698 @default.
- W2016982708 hasConceptScore W2016982708C120665830 @default.
- W2016982708 hasConceptScore W2016982708C121332964 @default.
- W2016982708 hasConceptScore W2016982708C136229726 @default.
- W2016982708 hasConceptScore W2016982708C142724271 @default.
- W2016982708 hasConceptScore W2016982708C165838908 @default.
- W2016982708 hasConceptScore W2016982708C184652730 @default.
- W2016982708 hasConceptScore W2016982708C192562407 @default.
- W2016982708 hasConceptScore W2016982708C2776541429 @default.
- W2016982708 hasConceptScore W2016982708C2776886416 @default.
- W2016982708 hasConceptScore W2016982708C2779329777 @default.
- W2016982708 hasConceptScore W2016982708C2781451080 @default.
- W2016982708 hasConceptScore W2016982708C2989005 @default.
- W2016982708 hasConceptScore W2016982708C33923547 @default.
- W2016982708 hasConceptScore W2016982708C71924100 @default.
- W2016982708 hasIssue "9" @default.
- W2016982708 hasLocation W20169827081 @default.
- W2016982708 hasLocation W20169827082 @default.