Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016984624> ?p ?o ?g. }
- W2016984624 endingPage "1321" @default.
- W2016984624 startingPage "1311" @default.
- W2016984624 abstract "Background Prognostication in comatose survivors of cardiac arrest is a major clinical challenge. The authors' objective was to determine whether an assessment with diffusion tensor imaging, a brain magnetic resonance imaging sequence, increases the accuracy of 1 yr functional outcome prediction in cardiac arrest survivors. Methods Prospective, observational study in two intensive care units. Fifty-seven comatose survivors of cardiac arrest underwent brain magnetic resonance imaging. Fractional anisotropy (FA), a diffusion tensor imaging value, was measured in predefined white matter regions, and apparent diffusion coefficient was assessed in predefined grey matter regions. Prediction of unfavorable outcome at 1 yr was compared using four prognostic models: FA global, FA selected, apparent diffusion coefficient, and clinical classifiers. Results Of the 57 patients included in the study, 49 had an unfavorable outcome at 12 months. Areas under the receiver operating characteristic curve (95% CI) to predict unfavorable outcome for the FA global, FA selected, clinical, and apparent diffusion coefficient models were 0.92 (0.82-0.98), 0.96 (0.87-0.99), 0.78 (0.65-0.88), and 0.86 (0.74-0.94), respectively. The FA selected model had the best overall accuracy for predicting outcome, with a score above 0.44 having 94% (95% CI, 83-99%) sensitivity and 100% (95% CI, 63-100%) specificity for the prediction of unfavorable outcome. Conclusion Quantitative diffusion tensor imaging indicates that white matter damage is widespread after cardiac arrest. A prognostic model based on FA values in selected white matter tracts seems to predict accurately 1 yr functional outcome. These preliminary results need to be confirmed in a larger population." @default.
- W2016984624 created "2016-06-24" @default.
- W2016984624 creator A5001052369 @default.
- W2016984624 creator A5023836233 @default.
- W2016984624 creator A5024625204 @default.
- W2016984624 creator A5035205639 @default.
- W2016984624 creator A5046498953 @default.
- W2016984624 creator A5049799218 @default.
- W2016984624 creator A5061198966 @default.
- W2016984624 creator A5061241486 @default.
- W2016984624 creator A5066493603 @default.
- W2016984624 creator A5072188433 @default.
- W2016984624 creator A5072547311 @default.
- W2016984624 creator A5084811801 @default.
- W2016984624 creator A5086767169 @default.
- W2016984624 creator A5090830124 @default.
- W2016984624 date "2012-12-01" @default.
- W2016984624 modified "2023-10-10" @default.
- W2016984624 title "Diffusion Tensor Imaging to Predict Long-term Outcome after Cardiac Arrest" @default.
- W2016984624 cites W1507819272 @default.
- W2016984624 cites W1603121691 @default.
- W2016984624 cites W1971241349 @default.
- W2016984624 cites W1983682808 @default.
- W2016984624 cites W1994117863 @default.
- W2016984624 cites W1999563285 @default.
- W2016984624 cites W2000236724 @default.
- W2016984624 cites W2025047388 @default.
- W2016984624 cites W2026812901 @default.
- W2016984624 cites W2028494482 @default.
- W2016984624 cites W2047152236 @default.
- W2016984624 cites W2051794287 @default.
- W2016984624 cites W2060695976 @default.
- W2016984624 cites W2063001897 @default.
- W2016984624 cites W2066850127 @default.
- W2016984624 cites W2072794641 @default.
- W2016984624 cites W2075593877 @default.
- W2016984624 cites W2084450115 @default.
- W2016984624 cites W2088781346 @default.
- W2016984624 cites W2106449448 @default.
- W2016984624 cites W2126488140 @default.
- W2016984624 cites W2127052891 @default.
- W2016984624 cites W2130457419 @default.
- W2016984624 cites W2139158372 @default.
- W2016984624 cites W2140821812 @default.
- W2016984624 cites W2143895814 @default.
- W2016984624 cites W2150667092 @default.
- W2016984624 cites W2166662384 @default.
- W2016984624 cites W2168377852 @default.
- W2016984624 cites W2170086164 @default.
- W2016984624 cites W2171793470 @default.
- W2016984624 cites W2316873978 @default.
- W2016984624 doi "https://doi.org/10.1097/aln.0b013e318275148c" @default.
- W2016984624 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23135257" @default.
- W2016984624 hasPublicationYear "2012" @default.
- W2016984624 type Work @default.
- W2016984624 sameAs 2016984624 @default.
- W2016984624 citedByCount "94" @default.
- W2016984624 countsByYear W20169846242013 @default.
- W2016984624 countsByYear W20169846242014 @default.
- W2016984624 countsByYear W20169846242015 @default.
- W2016984624 countsByYear W20169846242016 @default.
- W2016984624 countsByYear W20169846242017 @default.
- W2016984624 countsByYear W20169846242018 @default.
- W2016984624 countsByYear W20169846242019 @default.
- W2016984624 countsByYear W20169846242020 @default.
- W2016984624 countsByYear W20169846242021 @default.
- W2016984624 countsByYear W20169846242022 @default.
- W2016984624 countsByYear W20169846242023 @default.
- W2016984624 crossrefType "journal-article" @default.
- W2016984624 hasAuthorship W2016984624A5001052369 @default.
- W2016984624 hasAuthorship W2016984624A5023836233 @default.
- W2016984624 hasAuthorship W2016984624A5024625204 @default.
- W2016984624 hasAuthorship W2016984624A5035205639 @default.
- W2016984624 hasAuthorship W2016984624A5046498953 @default.
- W2016984624 hasAuthorship W2016984624A5049799218 @default.
- W2016984624 hasAuthorship W2016984624A5061198966 @default.
- W2016984624 hasAuthorship W2016984624A5061241486 @default.
- W2016984624 hasAuthorship W2016984624A5066493603 @default.
- W2016984624 hasAuthorship W2016984624A5072188433 @default.
- W2016984624 hasAuthorship W2016984624A5072547311 @default.
- W2016984624 hasAuthorship W2016984624A5084811801 @default.
- W2016984624 hasAuthorship W2016984624A5086767169 @default.
- W2016984624 hasAuthorship W2016984624A5090830124 @default.
- W2016984624 hasBestOaLocation W20169846241 @default.
- W2016984624 hasConcept C126322002 @default.
- W2016984624 hasConcept C126838900 @default.
- W2016984624 hasConcept C143409427 @default.
- W2016984624 hasConcept C149550507 @default.
- W2016984624 hasConcept C164705383 @default.
- W2016984624 hasConcept C188816634 @default.
- W2016984624 hasConcept C2781192897 @default.
- W2016984624 hasConcept C2989005 @default.
- W2016984624 hasConcept C70816921 @default.
- W2016984624 hasConcept C71924100 @default.
- W2016984624 hasConcept C89916169 @default.
- W2016984624 hasConceptScore W2016984624C126322002 @default.
- W2016984624 hasConceptScore W2016984624C126838900 @default.
- W2016984624 hasConceptScore W2016984624C143409427 @default.