Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016985943> ?p ?o ?g. }
- W2016985943 abstract "a b s t r a c t Given a function f ∈ C 1,1 In the literature, a parametrized optimization problem involves, usually, an objective function and constraints depending on parameters. The stability results are related to the study of various continuity properties of the solution map (with respect to the parameter), while the sensitivity analysis refers to the quantitative investigation, like, for instance, the study of Lipschitz properties of the solution map. Generally speaking, the concept of well-posedness of an optimization problem focuses on existence, uniqueness and continuity properties of the solutions (both optimal solutions and optimal value) with respect to data perturbations, and therefore deals with the stability properties (see, for instance, (1,2)). Hence well- posedness is not directly related to the different issues of sensitivity analysis, although there are obvious connections between the two research areas. On the other hand, the condition number represents a measure of the sensitivity of the solutions with respect to small changes in the problem's data, and it is usually conceived as an upper bound of the ratio of the size of the solution error to the size of the data error. At the same time, this number says how we can perturb the initial problem in order to preserve its good properties. In the literature, the ''conditioning'' is essentially related to numerical problems. A prototype result involving condition numbers is the well-known distance theorem of Eckart-Young (see (3)): via the norm of the inverse matrix it provides an upper bound on how much a given matrix may be perturbed in order to preserve its nonsingularity. This remarkable result has been extended to several problems like computation of eigenvalues and eigenvectors, and of zeros of polynomials, and to various optimization problems. It is worthwhile mentioning, in the framework of linear programming, the exhaustive paper by Renegar (4)." @default.
- W2016985943 created "2016-06-24" @default.
- W2016985943 creator A5000813929 @default.
- W2016985943 creator A5011356494 @default.
- W2016985943 creator A5033084316 @default.
- W2016985943 date "2012-01-01" @default.
- W2016985943 modified "2023-10-01" @default.
- W2016985943 title "Conditioning for optimization problems under general perturbations" @default.
- W2016985943 cites W1540131774 @default.
- W2016985943 cites W1987898022 @default.
- W2016985943 cites W1996975947 @default.
- W2016985943 cites W2004026774 @default.
- W2016985943 cites W2017593640 @default.
- W2016985943 cites W2099743855 @default.
- W2016985943 cites W2183545872 @default.
- W2016985943 cites W2496276084 @default.
- W2016985943 cites W38377613 @default.
- W2016985943 cites W611187539 @default.
- W2016985943 doi "https://doi.org/10.1016/j.na.2011.07.061" @default.
- W2016985943 hasPublicationYear "2012" @default.
- W2016985943 type Work @default.
- W2016985943 sameAs 2016985943 @default.
- W2016985943 citedByCount "3" @default.
- W2016985943 countsByYear W20169859432013 @default.
- W2016985943 countsByYear W20169859432014 @default.
- W2016985943 countsByYear W20169859432017 @default.
- W2016985943 crossrefType "journal-article" @default.
- W2016985943 hasAuthorship W2016985943A5000813929 @default.
- W2016985943 hasAuthorship W2016985943A5011356494 @default.
- W2016985943 hasAuthorship W2016985943A5033084316 @default.
- W2016985943 hasConcept C106487976 @default.
- W2016985943 hasConcept C112972136 @default.
- W2016985943 hasConcept C119857082 @default.
- W2016985943 hasConcept C121332964 @default.
- W2016985943 hasConcept C126255220 @default.
- W2016985943 hasConcept C127413603 @default.
- W2016985943 hasConcept C134306372 @default.
- W2016985943 hasConcept C135252773 @default.
- W2016985943 hasConcept C137836250 @default.
- W2016985943 hasConcept C14036430 @default.
- W2016985943 hasConcept C158693339 @default.
- W2016985943 hasConcept C159985019 @default.
- W2016985943 hasConcept C17744445 @default.
- W2016985943 hasConcept C191795146 @default.
- W2016985943 hasConcept C192562407 @default.
- W2016985943 hasConcept C199539241 @default.
- W2016985943 hasConcept C21200559 @default.
- W2016985943 hasConcept C22324862 @default.
- W2016985943 hasConcept C24326235 @default.
- W2016985943 hasConcept C2777021972 @default.
- W2016985943 hasConcept C2780009758 @default.
- W2016985943 hasConcept C28826006 @default.
- W2016985943 hasConcept C33923547 @default.
- W2016985943 hasConcept C41008148 @default.
- W2016985943 hasConcept C62520636 @default.
- W2016985943 hasConcept C77088390 @default.
- W2016985943 hasConcept C77553402 @default.
- W2016985943 hasConcept C78458016 @default.
- W2016985943 hasConcept C84545080 @default.
- W2016985943 hasConcept C86803240 @default.
- W2016985943 hasConceptScore W2016985943C106487976 @default.
- W2016985943 hasConceptScore W2016985943C112972136 @default.
- W2016985943 hasConceptScore W2016985943C119857082 @default.
- W2016985943 hasConceptScore W2016985943C121332964 @default.
- W2016985943 hasConceptScore W2016985943C126255220 @default.
- W2016985943 hasConceptScore W2016985943C127413603 @default.
- W2016985943 hasConceptScore W2016985943C134306372 @default.
- W2016985943 hasConceptScore W2016985943C135252773 @default.
- W2016985943 hasConceptScore W2016985943C137836250 @default.
- W2016985943 hasConceptScore W2016985943C14036430 @default.
- W2016985943 hasConceptScore W2016985943C158693339 @default.
- W2016985943 hasConceptScore W2016985943C159985019 @default.
- W2016985943 hasConceptScore W2016985943C17744445 @default.
- W2016985943 hasConceptScore W2016985943C191795146 @default.
- W2016985943 hasConceptScore W2016985943C192562407 @default.
- W2016985943 hasConceptScore W2016985943C199539241 @default.
- W2016985943 hasConceptScore W2016985943C21200559 @default.
- W2016985943 hasConceptScore W2016985943C22324862 @default.
- W2016985943 hasConceptScore W2016985943C24326235 @default.
- W2016985943 hasConceptScore W2016985943C2777021972 @default.
- W2016985943 hasConceptScore W2016985943C2780009758 @default.
- W2016985943 hasConceptScore W2016985943C28826006 @default.
- W2016985943 hasConceptScore W2016985943C33923547 @default.
- W2016985943 hasConceptScore W2016985943C41008148 @default.
- W2016985943 hasConceptScore W2016985943C62520636 @default.
- W2016985943 hasConceptScore W2016985943C77088390 @default.
- W2016985943 hasConceptScore W2016985943C77553402 @default.
- W2016985943 hasConceptScore W2016985943C78458016 @default.
- W2016985943 hasConceptScore W2016985943C84545080 @default.
- W2016985943 hasConceptScore W2016985943C86803240 @default.
- W2016985943 hasLocation W20169859431 @default.
- W2016985943 hasOpenAccess W2016985943 @default.
- W2016985943 hasPrimaryLocation W20169859431 @default.
- W2016985943 hasRelatedWork W103965151 @default.
- W2016985943 hasRelatedWork W1990979649 @default.
- W2016985943 hasRelatedWork W2007940977 @default.
- W2016985943 hasRelatedWork W2008709052 @default.
- W2016985943 hasRelatedWork W2011665537 @default.
- W2016985943 hasRelatedWork W2015224767 @default.
- W2016985943 hasRelatedWork W2040541934 @default.