Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017008711> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2017008711 endingPage "876" @default.
- W2017008711 startingPage "855" @default.
- W2017008711 abstract "The problem of clustering a group of observations according to some objective function (e.g., K-means clustering, variable selection) or a density (e.g., posterior from a Dirichlet process mixture model prior) can be cast in the framework of Monte Carlo sampling for cluster indicators. We propose a new method called the evolutionary Monte Carlo clustering (EMCC) algorithm, in which three new “crossover moves,” based on swapping and reshuffling sub cluster intersections, are proposed. We apply the EMCC algorithm to several clustering problems including Bernoulli clustering, biological sequence motif clustering, BIC based variable selection, and mixture of normals clustering. We compare EMCC's performance both as a sampler and as a stochastic optimizer with Gibbs sampling, “split-merge” Metropolis–Hastings algorithms, K-means clustering, and the MCLUST algorithm." @default.
- W2017008711 created "2016-06-24" @default.
- W2017008711 creator A5012820890 @default.
- W2017008711 creator A5015401462 @default.
- W2017008711 creator A5091255227 @default.
- W2017008711 date "2007-12-01" @default.
- W2017008711 modified "2023-09-26" @default.
- W2017008711 title "Evolutionary Monte Carlo Methods for Clustering" @default.
- W2017008711 cites W1966158039 @default.
- W2017008711 cites W1968058266 @default.
- W2017008711 cites W2001272401 @default.
- W2017008711 cites W2011832962 @default.
- W2017008711 cites W2048971218 @default.
- W2017008711 cites W2065246942 @default.
- W2017008711 cites W2085750643 @default.
- W2017008711 cites W2089484716 @default.
- W2017008711 cites W2138309709 @default.
- W2017008711 cites W2162021827 @default.
- W2017008711 cites W2796432875 @default.
- W2017008711 cites W4250051631 @default.
- W2017008711 cites W4302434451 @default.
- W2017008711 doi "https://doi.org/10.1198/106186007x255072" @default.
- W2017008711 hasPublicationYear "2007" @default.
- W2017008711 type Work @default.
- W2017008711 sameAs 2017008711 @default.
- W2017008711 citedByCount "8" @default.
- W2017008711 countsByYear W20170087112013 @default.
- W2017008711 countsByYear W20170087112014 @default.
- W2017008711 countsByYear W20170087112015 @default.
- W2017008711 countsByYear W20170087112023 @default.
- W2017008711 crossrefType "journal-article" @default.
- W2017008711 hasAuthorship W2017008711A5012820890 @default.
- W2017008711 hasAuthorship W2017008711A5015401462 @default.
- W2017008711 hasAuthorship W2017008711A5091255227 @default.
- W2017008711 hasBestOaLocation W20170087112 @default.
- W2017008711 hasConcept C104047586 @default.
- W2017008711 hasConcept C105795698 @default.
- W2017008711 hasConcept C107673813 @default.
- W2017008711 hasConcept C11413529 @default.
- W2017008711 hasConcept C124101348 @default.
- W2017008711 hasConcept C149872217 @default.
- W2017008711 hasConcept C154945302 @default.
- W2017008711 hasConcept C158424031 @default.
- W2017008711 hasConcept C17212007 @default.
- W2017008711 hasConcept C19499675 @default.
- W2017008711 hasConcept C22648726 @default.
- W2017008711 hasConcept C33704608 @default.
- W2017008711 hasConcept C33923547 @default.
- W2017008711 hasConcept C41008148 @default.
- W2017008711 hasConcept C73555534 @default.
- W2017008711 hasConcept C94641424 @default.
- W2017008711 hasConceptScore W2017008711C104047586 @default.
- W2017008711 hasConceptScore W2017008711C105795698 @default.
- W2017008711 hasConceptScore W2017008711C107673813 @default.
- W2017008711 hasConceptScore W2017008711C11413529 @default.
- W2017008711 hasConceptScore W2017008711C124101348 @default.
- W2017008711 hasConceptScore W2017008711C149872217 @default.
- W2017008711 hasConceptScore W2017008711C154945302 @default.
- W2017008711 hasConceptScore W2017008711C158424031 @default.
- W2017008711 hasConceptScore W2017008711C17212007 @default.
- W2017008711 hasConceptScore W2017008711C19499675 @default.
- W2017008711 hasConceptScore W2017008711C22648726 @default.
- W2017008711 hasConceptScore W2017008711C33704608 @default.
- W2017008711 hasConceptScore W2017008711C33923547 @default.
- W2017008711 hasConceptScore W2017008711C41008148 @default.
- W2017008711 hasConceptScore W2017008711C73555534 @default.
- W2017008711 hasConceptScore W2017008711C94641424 @default.
- W2017008711 hasIssue "4" @default.
- W2017008711 hasLocation W20170087111 @default.
- W2017008711 hasLocation W20170087112 @default.
- W2017008711 hasOpenAccess W2017008711 @default.
- W2017008711 hasPrimaryLocation W20170087111 @default.
- W2017008711 hasRelatedWork W2129417512 @default.
- W2017008711 hasRelatedWork W2356030476 @default.
- W2017008711 hasRelatedWork W2389934482 @default.
- W2017008711 hasRelatedWork W2782648987 @default.
- W2017008711 hasRelatedWork W3176177124 @default.
- W2017008711 hasRelatedWork W4200404937 @default.
- W2017008711 hasRelatedWork W4224252928 @default.
- W2017008711 hasRelatedWork W4241252752 @default.
- W2017008711 hasRelatedWork W1491908038 @default.
- W2017008711 hasRelatedWork W2185743328 @default.
- W2017008711 hasVolume "16" @default.
- W2017008711 isParatext "false" @default.
- W2017008711 isRetracted "false" @default.
- W2017008711 magId "2017008711" @default.
- W2017008711 workType "article" @default.