Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017018726> ?p ?o ?g. }
- W2017018726 endingPage "1134" @default.
- W2017018726 startingPage "1123" @default.
- W2017018726 abstract "The effective recognition of unnatural control chart patterns (CCPs) is a critical issue in statistical process control, as unnatural CCPs can be associated with specific assignable causes adversely affecting the process. Machine learning techniques, such as artificial neural networks (ANNs), have been widely used in the research field of CCP recognition. However, ANN approaches can easily overfit the training data, producing models that can suffer from the difficulty of generalization. This causes a pattern misclassification problem when the training examples contain a high level of background noise (common cause variation). Support vector machines (SVMs) embody the structural risk minimization, which has been shown to be superior to the traditional empirical risk minimization principle employed by ANNs. This research presents a SVM-based CCP recognition model for the on-line real-time recognition of seven typical types of unnatural CCP, assuming that the process observations are AR(1) correlated over time. Empirical comparisons indicate that the proposed SVM-based model achieves better performance in both recognition accuracy and recognition speed than the model based on a learning vector quantization network. Furthermore, the proposed model is more robust toward background noise in the process data than the model based on a back propagation network. These results show the great potential of SVM methods for on-line CCP recognition." @default.
- W2017018726 created "2016-06-24" @default.
- W2017018726 creator A5017372589 @default.
- W2017018726 creator A5039535862 @default.
- W2017018726 creator A5050618169 @default.
- W2017018726 date "2011-11-01" @default.
- W2017018726 modified "2023-10-04" @default.
- W2017018726 title "Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach" @default.
- W2017018726 cites W1554862052 @default.
- W2017018726 cites W1558707930 @default.
- W2017018726 cites W1968849283 @default.
- W2017018726 cites W1973344267 @default.
- W2017018726 cites W1975777064 @default.
- W2017018726 cites W1981400526 @default.
- W2017018726 cites W1988518729 @default.
- W2017018726 cites W1998067103 @default.
- W2017018726 cites W2010028439 @default.
- W2017018726 cites W2021522096 @default.
- W2017018726 cites W2023424777 @default.
- W2017018726 cites W2024962697 @default.
- W2017018726 cites W2028975772 @default.
- W2017018726 cites W2030013724 @default.
- W2017018726 cites W2038781708 @default.
- W2017018726 cites W2051516107 @default.
- W2017018726 cites W2055522016 @default.
- W2017018726 cites W2088882986 @default.
- W2017018726 cites W2096557925 @default.
- W2017018726 cites W2108149553 @default.
- W2017018726 cites W2110437556 @default.
- W2017018726 cites W2139212933 @default.
- W2017018726 cites W2159494272 @default.
- W2017018726 cites W2791282478 @default.
- W2017018726 cites W2793445666 @default.
- W2017018726 cites W4252663023 @default.
- W2017018726 doi "https://doi.org/10.1016/j.cie.2011.06.025" @default.
- W2017018726 hasPublicationYear "2011" @default.
- W2017018726 type Work @default.
- W2017018726 sameAs 2017018726 @default.
- W2017018726 citedByCount "46" @default.
- W2017018726 countsByYear W20170187262012 @default.
- W2017018726 countsByYear W20170187262013 @default.
- W2017018726 countsByYear W20170187262014 @default.
- W2017018726 countsByYear W20170187262015 @default.
- W2017018726 countsByYear W20170187262016 @default.
- W2017018726 countsByYear W20170187262017 @default.
- W2017018726 countsByYear W20170187262018 @default.
- W2017018726 countsByYear W20170187262019 @default.
- W2017018726 countsByYear W20170187262020 @default.
- W2017018726 countsByYear W20170187262021 @default.
- W2017018726 countsByYear W20170187262022 @default.
- W2017018726 countsByYear W20170187262023 @default.
- W2017018726 crossrefType "journal-article" @default.
- W2017018726 hasAuthorship W2017018726A5017372589 @default.
- W2017018726 hasAuthorship W2017018726A5039535862 @default.
- W2017018726 hasAuthorship W2017018726A5050618169 @default.
- W2017018726 hasConcept C111919701 @default.
- W2017018726 hasConcept C115961682 @default.
- W2017018726 hasConcept C119857082 @default.
- W2017018726 hasConcept C12267149 @default.
- W2017018726 hasConcept C124101348 @default.
- W2017018726 hasConcept C153180895 @default.
- W2017018726 hasConcept C154507838 @default.
- W2017018726 hasConcept C154945302 @default.
- W2017018726 hasConcept C196985124 @default.
- W2017018726 hasConcept C22019652 @default.
- W2017018726 hasConcept C40567965 @default.
- W2017018726 hasConcept C41008148 @default.
- W2017018726 hasConcept C50644808 @default.
- W2017018726 hasConcept C98045186 @default.
- W2017018726 hasConcept C99498987 @default.
- W2017018726 hasConceptScore W2017018726C111919701 @default.
- W2017018726 hasConceptScore W2017018726C115961682 @default.
- W2017018726 hasConceptScore W2017018726C119857082 @default.
- W2017018726 hasConceptScore W2017018726C12267149 @default.
- W2017018726 hasConceptScore W2017018726C124101348 @default.
- W2017018726 hasConceptScore W2017018726C153180895 @default.
- W2017018726 hasConceptScore W2017018726C154507838 @default.
- W2017018726 hasConceptScore W2017018726C154945302 @default.
- W2017018726 hasConceptScore W2017018726C196985124 @default.
- W2017018726 hasConceptScore W2017018726C22019652 @default.
- W2017018726 hasConceptScore W2017018726C40567965 @default.
- W2017018726 hasConceptScore W2017018726C41008148 @default.
- W2017018726 hasConceptScore W2017018726C50644808 @default.
- W2017018726 hasConceptScore W2017018726C98045186 @default.
- W2017018726 hasConceptScore W2017018726C99498987 @default.
- W2017018726 hasIssue "4" @default.
- W2017018726 hasLocation W20170187261 @default.
- W2017018726 hasOpenAccess W2017018726 @default.
- W2017018726 hasPrimaryLocation W20170187261 @default.
- W2017018726 hasRelatedWork W1996541855 @default.
- W2017018726 hasRelatedWork W2355747712 @default.
- W2017018726 hasRelatedWork W2374560386 @default.
- W2017018726 hasRelatedWork W2375493088 @default.
- W2017018726 hasRelatedWork W2387178200 @default.
- W2017018726 hasRelatedWork W2989932438 @default.
- W2017018726 hasRelatedWork W3049633467 @default.
- W2017018726 hasRelatedWork W3099765033 @default.
- W2017018726 hasRelatedWork W4210794429 @default.