Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017050785> ?p ?o ?g. }
- W2017050785 endingPage "954" @default.
- W2017050785 startingPage "940" @default.
- W2017050785 abstract "Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease. Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease. Embryonic stem cells (ESCs) are pluripotent, self-renewing cells that are derived from the inner cell mass (ICM) of the developing blastocyst. Pluripotency is the capacity of a single cell to generate all cell lineages of the developing and adult organism. Self-renewal is the ability of a cell to proliferate in the same state. The molecular mechanisms that control ESC pluripotency and self-renewal are important to discover because they are key to understanding development. Because defects in development cause many different diseases, improved understanding of control mechanisms in pluripotent cells may lead to new therapies for these diseases. ESCs have a gene expression program that allows them to self-renew yet remain poised to differentiate into essentially all cell types in response to developmental cues. Recent reviews have discussed ESCs and developmental potency (Rossant, 2008Rossant J. Stem cells and early lineage development.Cell. 2008; 132: 527-531Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar), the nature of the pluripotent ground state of ESCs (Silva and Smith, 2008Silva J. Smith A. Capturing pluripotency.Cell. 2008; 132: 532-536Abstract Full Text Full Text PDF PubMed Scopus (196) Google Scholar), ESC transcriptional regulatory circuitry (Chen et al., 2008aChen X. Vega V.B. Ng H.H. Transcriptional regulatory networks in embryonic stem cells.Cold Spring Harb. Symp. Quant. Biol. 2008; 73: 203-209Crossref PubMed Scopus (28) Google Scholar, Jaenisch and Young, 2008Jaenisch R. Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming.Cell. 2008; 132: 567-582Abstract Full Text Full Text PDF PubMed Scopus (622) Google Scholar, Macarthur et al., 2009Macarthur B.D. Ma'ayan A. Lemischka I.R. Systems biology of stem cell fate and cellular reprogramming.Nat. Rev. Mol. Cell Biol. 2009; 10: 672-681PubMed Google Scholar, Orkin et al., 2008Orkin S.H. Wang J. Kim J. Chu J. Rao S. Theunissen T.W. Shen X. Levasseur D.N. The transcriptional network controlling pluripotency in ES cells.Cold Spring Harb. Symp. Quant. Biol. 2008; 73: 195-202Crossref PubMed Scopus (32) Google Scholar), the influence of extrinsic factors on pluripotency (Pera and Tam, 2010Pera M.F. Tam P.P. Extrinsic regulation of pluripotent stem cells.Nature. 2010; 465: 713-720Crossref PubMed Scopus (103) Google Scholar), and cellular reprogramming into ESC-like states (Hanna et al., 2010Hanna J.H. Saha K. Jaenisch R. Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues.Cell. 2010; 143: 508-525Abstract Full Text Full Text PDF PubMed Scopus (245) Google Scholar, Stadtfeld and Hochedlinger, 2010Stadtfeld M. Hochedlinger K. Induced pluripotency: history, mechanisms, and applications.Genes Dev. 2010; 24: 2239-2263Crossref PubMed Scopus (250) Google Scholar, Yamanaka and Blau, 2010Yamanaka S. Blau H.M. Nuclear reprogramming to a pluripotent state by three approaches.Nature. 2010; 465: 704-712Crossref PubMed Scopus (272) Google Scholar). This Review provides a synthesis of key concepts that explain how pluripotency and self-renewal are controlled transcriptionally. These concepts have emerged from genetic, biochemical, and molecular studies of the transcription factors, cofactors, chromatin regulators, and noncoding RNAs (ncRNAs) that control the ESC gene expression program. The regulators of gene expression programs can participate in gene activation, establish a poised state for gene activation in response to developmental cues, or contribute to gene silencing (Figure 1). The molecular mechanisms by which these regulators generally participate in control of gene expression are the subject of other reviews (Bartel, 2009Bartel D.P. MicroRNAs: Target recognition and regulatory functions.Cell. 2009; 136: 215-233Abstract Full Text Full Text PDF PubMed Scopus (3595) Google Scholar, Bonasio et al., 2010Bonasio R. Tu S. Reinberg D. Molecular signals of epigenetic states.Science. 2010; 330: 612-616Crossref PubMed Scopus (221) Google Scholar, Fuda et al., 2009Fuda N.J. Ardehali M.B. Lis J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo.Nature. 2009; 461: 186-192Crossref PubMed Scopus (183) Google Scholar, Ho and Crabtree, 2010Ho L. Crabtree G.R. Chromatin remodelling during development.Nature. 2010; 463: 474-484Crossref PubMed Scopus (254) Google Scholar, Li et al., 2007Li B. Carey M. Workman J.L. The role of chromatin during transcription.Cell. 2007; 128: 707-719Abstract Full Text Full Text PDF PubMed Scopus (1385) Google Scholar, Roeder, 2005Roeder R.G. Transcriptional regulation and the role of diverse coactivators in animal cells.FEBS Lett. 2005; 579: 909-915Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar, Surface et al., 2010Surface L.E. Thornton S.R. Boyer L.A. Polycomb group proteins set the stage for early lineage commitment.Cell Stem Cell. 2010; 7: 288-298Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar, Taatjes, 2010Taatjes D.J. The human Mediator complex: a versatile, genome-wide regulator of transcription.Trends Biochem. Sci. 2010; 35: 315-322Abstract Full Text Full Text PDF PubMed Scopus (122) Google Scholar). I describe here the regulators that have been implicated in control of ESC state and discuss how they contribute to the gene expression program of pluripotency and self-renewal. ESCs are perhaps unique in that they've been the subject of virtually every scale of investigation from large-scale genomics and protein-DNA interaction studies to highly focused mechanistic studies of individual regulatory factors. The combined results of these systems-level and molecular approaches offer a definition of embryonic stem cell state in terms of global gene regulation, which serves as both a baseline for understanding the changes that occur as cells differentiate and develop and as a means to understand the basic biology of these cells. For the purposes of this Review, this “state” is the product of all the regulatory inputs that produce the gene expression program of pluripotent, self-renewing cells. The most important regulatory inputs in ESCs appear to come from a small number of “core” transcription factors acting in concert with other transcription factors, some of which are terminal components of developmental signaling pathways. Transcription factors recognize specific DNA sequences and either activate or prevent transcription. Early studies into the transcriptional control of the E. coli lac operon created the framework for understanding gene control (Jacob and Monod, 1961Jacob F. Monod J. Genetic regulatory mechanisms in the synthesis of proteins.J. Mol. Biol. 1961; 3: 318-356Crossref PubMed Google Scholar). In the absence of lactose, the lac operon is repressed by the Lac repressor, which binds the lac operator and inhibits transcription by RNA polymerase. In the presence of lactose, the Lac repressor is lost and gene expression is activated by a transcription-activating factor that binds a nearby site and recruits RNA polymerase. The fundamental concept that emerged from these studies—that gene control relies on specific repressors and activators and the DNA sequence elements they recognize—continues to provide the foundation for understanding control of gene expression in all organisms. In mammals, transcription factors make up the largest single class of proteins encoded in the genome, representing approximately 10% of all protein-coding genes (Levine and Tjian, 2003Levine M. Tjian R. Transcription regulation and animal diversity.Nature. 2003; 424: 147-151Crossref PubMed Scopus (625) Google Scholar, Vaquerizas et al., 2009Vaquerizas J.M. Kummerfeld S.K. Teichmann S.A. Luscombe N.M. A census of human transcription factors: function, expression and evolution.Nat. Rev. Genet. 2009; 10: 252-263Crossref PubMed Scopus (250) Google Scholar). Transcription factors bind both to promoter-proximal DNA elements and to more distal regions that can be nearby or 100s of kb away. The elements that are involved in positive gene regulation are called enhancers, and these elements are generally bound by multiple transcription factors. Transcription factors can activate gene expression by recruiting the transcription apparatus and/or by stimulating release of RNA polymerase II from pause sites (Fuda et al., 2009Fuda N.J. Ardehali M.B. Lis J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo.Nature. 2009; 461: 186-192Crossref PubMed Scopus (183) Google Scholar). They can also recruit various chromatin regulators to promoter regions to modify and mobilize nucleosomes in order to increase access to local DNA sequences (Li et al., 2007Li B. Carey M. Workman J.L. The role of chromatin during transcription.Cell. 2007; 128: 707-719Abstract Full Text Full Text PDF PubMed Scopus (1385) Google Scholar). In ESCs, the pluripotent state is largely governed by the core transcription factors Oct4, Sox2, and Nanog (Table 1) (Chambers and Smith, 2004Chambers I. Smith A. Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene. 2004; 23: 7150-7160Crossref PubMed Scopus (317) Google Scholar, Niwa, 2007Niwa H. How is pluripotency determined and maintained?.Development. 2007; 134: 635-646Crossref PubMed Scopus (380) Google Scholar, Silva and Smith, 2008Silva J. Smith A. Capturing pluripotency.Cell. 2008; 132: 532-536Abstract Full Text Full Text PDF PubMed Scopus (196) Google Scholar). Oct4 and Nanog were identified as key regulators based on their relatively unique expression pattern in ESCs and genetic experiments showing that they are essential for establishing or maintaining a robust pluripotent state (Chambers et al., 2003Chambers I. Colby D. Robertson M. Nichols J. Lee S. Tweedie S. Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Cell. 2003; 113: 643-655Abstract Full Text Full Text PDF PubMed Scopus (1674) Google Scholar, Chambers and Smith, 2004Chambers I. Smith A. Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene. 2004; 23: 7150-7160Crossref PubMed Scopus (317) Google Scholar, Mitsui et al., 2003Mitsui K. Tokuzawa Y. Itoh H. Segawa K. Murakami M. Takahashi K. Maruyama M. Maeda M. Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell. 2003; 113: 631-642Abstract Full Text Full Text PDF PubMed Scopus (1582) Google Scholar, Nichols et al., 1998Nichols J. Zevnik B. Anastassiadis K. Niwa H. Klewe-Nebenius D. Chambers I. Scholer H. Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Cell. 1998; 95: 379-391Abstract Full Text Full Text PDF PubMed Scopus (1672) Google Scholar, Niwa et al., 2000Niwa H. Miyazaki J. Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.Nat. Genet. 2000; 24: 372-376Crossref PubMed Scopus (1865) Google Scholar). Oct4 functions as a heterodimer with Sox2 in ESCs, thus placing Sox2 among the key regulators (Ambrosetti et al., 2000Ambrosetti D.C. Scholer H.R. Dailey L. Basilico C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer.J. Biol. Chem. 2000; 275: 23387-23397Crossref PubMed Scopus (99) Google Scholar, Avilion et al., 2003Avilion A.A. Nicolis S.K. Pevny L.H. Perez L. Vivian N. Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function.Genes Dev. 2003; 17: 126-140Crossref PubMed Scopus (1015) Google Scholar, Masui et al., 2007Masui S. Nakatake Y. Toyooka Y. Shimosato D. Yagi R. Takahashi K. Okochi H. Okuda A. Matoba R. Sharov A.A. et al.Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells.Nat. Cell Biol. 2007; 9: 625-635Crossref PubMed Scopus (412) Google Scholar). Reprogramming of somatic cells into induced pluripotent stem (iPS) cells generally requires forced expression of Oct4 and Sox2, unless endogenous Sox2 is expressed in the somatic cell, consistent with the view that Oct4/Sox2 are key to establishing the ESC state (Hanna et al., 2010Hanna J.H. Saha K. Jaenisch R. Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues.Cell. 2010; 143: 508-525Abstract Full Text Full Text PDF PubMed Scopus (245) Google Scholar, Stadtfeld and Hochedlinger, 2010Stadtfeld M. Hochedlinger K. Induced pluripotency: history, mechanisms, and applications.Genes Dev. 2010; 24: 2239-2263Crossref PubMed Scopus (250) Google Scholar, Yamanaka and Blau, 2010Yamanaka S. Blau H.M. Nuclear reprogramming to a pluripotent state by three approaches.Nature. 2010; 465: 704-712Crossref PubMed Scopus (272) Google Scholar). Although ESCs can be propagated in the absence of Nanog (Chambers et al., 2007Chambers I. Silva J. Colby D. Nichols J. Nijmeijer B. Robertson M. Vrana J. Jones K. Grotewold L. Smith A. Nanog safeguards pluripotency and mediates germline development.Nature. 2007; 450: 1230-1234Crossref PubMed Scopus (543) Google Scholar), Nanog promotes a stable undifferentiated ESC state (Chambers et al., 2007Chambers I. Silva J. Colby D. Nichols J. Nijmeijer B. Robertson M. Vrana J. Jones K. Grotewold L. Smith A. Nanog safeguards pluripotency and mediates germline development.Nature. 2007; 450: 1230-1234Crossref PubMed Scopus (543) Google Scholar), is necessary for pluripotency to develop in ICM cells (Silva et al., 2009Silva J. Nichols J. Theunissen T.W. Guo G. van Oosten A.L. Barrandon O. Wray J. Yamanaka S. Chambers I. Smith A. Nanog is the gateway to the pluripotent ground state.Cell. 2009; 138: 722-737Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar), and co-occupies most sites with Oct4 and Sox2 throughout the ESC genome (Marson et al., 2008bMarson A. Levine S.S. Cole M.F. Frampton G.M. Brambrink T. Johnstone S. Guenther M.G. Johnston W.K. Wernig M. Newman J. et al.Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells.Cell. 2008; 134: 521-533Abstract Full Text Full Text PDF PubMed Scopus (628) Google Scholar), so it is included here as a component of the core regulatory circuitry.Table 1Transcriptional Regulators Implicated in Control of ESC StateType of RegulatorFunctionReferencesTranscription FactorsOct4Core circuitry1Sox2Core circuitry2NanogCore circuitry3Tcf3Wnt signaling to core circuitry4Stat3Lif signaling to core circuitry5Smad1BMP signaling to core circuitry6Smad2/3TGF-β/Activin/Nodal signaling7c-MycProliferation8EsrrbSteroid hormone receptor9Sall4Embryonic regulator10Tbx3Mediates LIF signaling11ZfxSelf-renewal12RoninMetabolism13Klf4LIF signaling14Prdm14ESC identity15CofactorsMediatorCore circuitry16CohesinCore circuitry17Paf1 complexCouples transcription with histone modification18Dax1Oct4 inhibitor19Cnot3Myc/Zfx cofactor20Trim28Myc/Zfx cofactor21Chromatin RegulatorsPolycomb groupSilencing of lineage-specific regulators22SetDB1 (ESET)Silencing of lineage-specific regulators23esBAFNucleosome mobilization24Chd1Nucleosome mobilization25Chd7Nucleosome mobilization26Tip60-p400Histone acetylation27ncRNA RegulatorsmiRNAsFine-tuning of pluripotency transcripts28GC-rich ncRNAsPcG complex recruitment29The vast majority of these regulators were identified in murine ES cells, but most appear to play similar roles in human ES cells. LIF-Stat3 signaling is important for maintenance of murine ESCs and Activin-Smad2/3 signaling has been demonstrated to be important for human ESCs.References: 1 (Chambers et al., 2003Chambers I. Colby D. Robertson M. Nichols J. Lee S. Tweedie S. Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Cell. 2003; 113: 643-655Abstract Full Text Full Text PDF PubMed Scopus (1674) Google Scholar, Chambers and Smith, 2004Chambers I. Smith A. Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene. 2004; 23: 7150-7160Crossref PubMed Scopus (317) Google Scholar, Hart et al., 2004Hart A.H. Hartley L. Ibrahim M. Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human.Dev. Dyn. 2004; 230: 187-198Crossref PubMed Scopus (172) Google Scholar, Mitsui et al., 2003Mitsui K. Tokuzawa Y. Itoh H. Segawa K. Murakami M. Takahashi K. Maruyama M. Maeda M. Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell. 2003; 113: 631-642Abstract Full Text Full Text PDF PubMed Scopus (1582) Google Scholar, Nichols et al., 1998Nichols J. Zevnik B. Anastassiadis K. Niwa H. Klewe-Nebenius D. Chambers I. Scholer H. Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Cell. 1998; 95: 379-391Abstract Full Text Full Text PDF PubMed Scopus (1672) Google Scholar, Niwa et al., 2000Niwa H. Miyazaki J. Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.Nat. Genet. 2000; 24: 372-376Crossref PubMed Scopus (1865) Google Scholar, Scholer et al., 1990Scholer H.R. Ruppert S. Suzuki N. Chowdhury K. Gruss P. New type of POU domain in germ line-specific protein Oct-4.Nature. 1990; 344: 435-439Crossref PubMed Scopus (357) Google Scholar); 2 (Chambers and Smith, 2004Chambers I. Smith A. Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene. 2004; 23: 7150-7160Crossref PubMed Scopus (317) Google Scholar, Masui et al., 2007Masui S. Nakatake Y. Toyooka Y. Shimosato D. Yagi R. Takahashi K. Okochi H. Okuda A. Matoba R. Sharov A.A. et al.Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells.Nat. Cell Biol. 2007; 9: 625-635Crossref PubMed Scopus (412) Google Scholar); 3 (Chambers et al., 2003Chambers I. Colby D. Robertson M. Nichols J. Lee S. Tweedie S. Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Cell. 2003; 113: 643-655Abstract Full Text Full Text PDF PubMed Scopus (1674) Google Scholar, Hart et al., 2004Hart A.H. Hartley L. Ibrahim M. Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human.Dev. Dyn. 2004; 230: 187-198Crossref PubMed Scopus (172) Google Scholar, Mitsui et al., 2003Mitsui K. Tokuzawa Y. Itoh H. Segawa K. Murakami M. Takahashi K. Maruyama M. Maeda M. Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell. 2003; 113: 631-642Abstract Full Text Full Text PDF PubMed Scopus (1582) Google Scholar); 4 (Cole et al., 2008Cole M.F. Johnstone S.E. Newman J.J. Kagey M.H. Young R.A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells.Genes Dev. 2008; 22: 746-755Crossref PubMed Scopus (209) Google Scholar, Marson et al., 2008bMarson A. Levine S.S. Cole M.F. Frampton G.M. Brambrink T. Johnstone S. Guenther M.G. Johnston W.K. Wernig M. Newman J. et al.Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells.Cell. 2008; 134: 521-533Abstract Full Text Full Text PDF PubMed Scopus (628) Google Scholar); 5 (Niwa et al., 1998Niwa H. Burdon T. Chambers I. Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3.Genes Dev. 1998; 12: 2048-2060Crossref PubMed Google Scholar); 6 (Ying et al., 2003Ying Q.L. Nichols J. Chambers I. Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3.Cell. 2003; 115: 281-292Abstract Full Text Full Text PDF PubMed Scopus (1086) Google Scholar); 7 (Beattie et al., 2005Beattie G.M. Lopez A.D. Bucay N. Hinton A. Firpo M.T. King C.C. Hayek A. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers.Stem Cells. 2005; 23: 489-495Crossref PubMed Scopus (303) Google Scholar, James et al., 2005James D. Levine A.J. Besser D. Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.Development. 2005; 132: 1273-1282Crossref PubMed Scopus (442) Google Scholar, Vallier et al., 2005Vallier L. Alexander M. Pedersen R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.J. Cell Sci. 2005; 118: 4495-4509Crossref PubMed Scopus (423) Google Scholar), 8 (Cartwright et al., 2005Cartwright P. McLean C. Sheppard A. Rivett D. Jones K. Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism.Development. 2005; 132: 885-896Crossref PubMed Scopus (350) Google Scholar); 9 (Ivanova et al., 2006Ivanova N. Dobrin R. Lu R. Kotenko I. Levorse J. DeCoste C. Schafer X. Lun Y. Lemischka I.R. Dissecting self-renewal in stem cells with RNA interference.Nature. 2006; 442: 533-538Crossref PubMed Scopus (506) Google Scholar, Zhang et al., 2008Zhang X. Zhang J. Wang T. Esteban M.A. Pei D. Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells.J. Biol. Chem. 2008; 283: 35825-35833Crossref PubMed Scopus (62) Google Scholar); 10 (Wu et al., 2006Wu Q. Chen X. Zhang J. Loh Y.H. Low T.Y. Zhang W. Sze S.K. Lim B. Ng H.H. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells.J. Biol. Chem. 2006; 281: 24090-24094Crossref PubMed Scopus (133) Google Scholar, Zhang et al., 2006Zhang J. Tam W.L. Tong G.Q. Wu Q. Chan H.Y. Soh B.S. Lou Y. Yang J. Ma Y. Chai L. et al.Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1.Nat. Cell Biol. 2006; 8: 1114-1123Crossref PubMed Scopus (230) Google Scholar); 11 (Han et al.; Ivanova et al., 2006Ivanova N. Dobrin R. Lu R. Kotenko I. Levorse J. DeCoste C. Schafer X. Lun Y. Lemischka I.R. Dissecting self-renewal in stem cells with RNA interference.Nature. 2006; 442: 533-538Crossref PubMed Scopus (506) Google Scholar, Niwa et al., 2009Niwa H. Ogawa K. Shimosato D. Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells.Nature. 2009; 460: 118-122Crossref PubMed Scopus (258) Google Scholar), 12 (Galan-Caridad et al., 2007Galan-Caridad J.M. Harel S. Arenzana T.L. Hou Z.E. Doetsch F.K. Mirny L.A. Reizis B. Zfx controls the self-renewal of embryonic and hematopoietic stem cells.Cell. 2007; 129: 345-357Abstract Full Text Full Text PDF PubMed Scopus (111) Google Scholar); 13 (Dejosez et al., 2008Dejosez M. Krumenacker J.S. Zitur L.J. Passeri M. Chu L.F. Songyang Z. Thomson J.A. Zwaka T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells.Cell. 2008; 133: 1162-1174Abstract Full Text Full Text PDF PubMed Scopus (90) Google Scholar, Dejosez et al., 2010Dejosez M. Levine S.S. Frampton G.M. Whyte W.A. Stratton S.A. Barton M.C. Gunaratne P.H. Young R.A. Zwaka T.P. Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells.Genes Dev. 2010; 24: 1479-1484Crossref PubMed Scopus (39) Google Scholar); 14 (Jiang et al., 2008Jiang J. Chan Y.S. Loh Y.H. Cai J. Tong G.Q. Lim C.A. Robson P. Zhong S. Ng H.H. A core Klf circuitry regulates self-renewal of embryonic stem cells.Nat. Cell Biol. 2008; 10: 353-360Crossref PubMed Scopus (311) Google Scholar, Niwa et al., 2009Niwa H. Ogawa K. Shimosato D. Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells.Nature. 2009; 460: 118-122Crossref PubMed Scopus (258) Google Scholar); 15 (Chia et al., 2010Chia N.Y. Chan Y.S. Feng B. Lu X. Orlov Y.L. Moreau D. Kumar P. Yang L. Jiang J. Lau M.S. et al.A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity.Nature. 2010; 468: 316-320Crossref PubMed Scopus (123) Google Scholar); 16 (Hu et al., 2009Hu G. Kim J. Xu Q. Leng Y. Orkin S.H. Elledge S.J. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal.Genes Dev. 2009; 23: 837-848Crossref PubMed Scopus (140) Google Scholar, Kagey et al., 2010Kagey M.H. Newman J.J. Bilodeau S. Zhan Y. Orlando D.A. van Berkum N.L. Ebmeier C.C. Goossens J. Rahl P.B. Levine S.S. et al.Mediator and cohesin connect gene expression and chromatin architecture.Nature. 2010; 467: 430-435Crossref PubMed Scopus (377) Google Scholar); 17 (Fazzio et al., 2008Fazzio T.G. Huff J.T. Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity.Cell. 2008; 134: 162-174Abstract Full Text Full Text PDF PubMed Scopus (156) Google Scholar, Hu et al., 2009Hu G. Kim J. Xu Q. Leng Y. Orkin S.H. Elledge S.J. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal.Genes Dev. 2009; 23: 837-848Crossref PubMed Scopus (140) Google Scholar, Kagey et al., 2010Kagey M.H. Newman J.J. Bilodeau S. Zhan Y. Orlando D.A. van Berkum N.L. Ebmeier C.C. Goossens J. Rahl P.B. Levine S.S. et al.Mediator and cohesin connect gene expression and chromatin architecture.Nature. 2010; 467: 430-435Crossref PubMed Scopus (377) Google Scholar); 18 (Ding et al., 2009Ding L. Paszkowski-Rogacz M. Nitzsche A. Slabicki M.M. Heninger A.K. de Vries I. Kittler R. Junqueira M. Shevchenko A. Schulz H. et al.A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.Cell Stem Cell. 2009; 4: 403-415Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar); 19 (Kim et al., 2008Kim J. Chu J. Shen X. Wang J. Orkin S.H. An extended transcriptional network for pluripotency of embryonic stem cells.Cell. 2008; 132: 1049-1061Abstract Full Text Full Text PDF PubMed Scopus (590) Google Scholar, Niakan et al., 2006Niakan K.K. Davis E.C. Clipsham R.C. Jiang M. Dehart D.B. Sulik K.K. McCabe E.R. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis.Mol. Genet. Metab. 2006; 88: 261-271Crossref PubMed Scopus (53) Google Scholar, Sun et al., 2009Sun C. Nakatake Y. Akagi T. Ura H. Matsuda T. Nishiyama A. Koide H. Ko M.S. Niwa H. Yokota T. Dax1 binds to Oct3/4 and inhibits its transcriptional activity in embryonic stem cells.Mol. Cell. Biol. 2009; 29: 4574-4583Crossref PubMed Scopus (37) Google Scholar); 20 (Hu et al., 2009Hu G. Kim J. Xu Q. Leng Y. Orkin S.H. Elledge S.J. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal.Genes Dev. 2009; 23: 837-848Crossref PubMed Scopus (140) Google Scholar); 21 (Fazzio et al., 2008Fazzio T.G. Huff J.T. Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity.Cell. 2008; 134: 162-174Abstract Full Text Full Text PDF PubMed Scopus (156) Google Scholar, Hu et al., 2009Hu G. Kim J. Xu Q. Leng Y. Orkin S.H. Elledge S.J. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal.Genes Dev. 2009; 23: 837-848Crossref PubMed Scopus (140) Google Scholar); 22 (Azuara et al., 2006Azuara V. Perry P. Sauer S. Spivakov M. Jorgensen H.F. John R.M. Gouti M. Casanova M. Warnes G. Merkenschlager M. et al.Chromatin signatures of pluripotent cell lines.Nat. Cell Biol. 2006; 8: 532-538Crossref PubMed Google Scholar, Bernstein et al., 2006Bernstein B.E. Mikkelsen T.S. Xie X. Kamal M. Huebert D.J. Cuff J. Fry B. Meissner A. Wernig M. Plath K. et al.A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell. 2006; 125: 315-326Abstract Full Text Full Text PDF PubMed Scopus (1929) Google Scholar, Boyer et al., 2006Boyer L.A. Plath K. Zeitlinger J. Brambrink T. Medeiros L.A. Lee T.I. Levine S.S. Wernig M. Tajonar A. Ray M.K. et al.Polycomb complexes repress developmental regulators in murine embryonic stem cells.Nature. 2006; 441: 349-353Crossref PubMed Scopus (1184) Google Scholar, Bracken et al., 2006Bracken A.P. Dietrich N. Pasini D. Hansen K.H. Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions.Genes Dev. 2006; 20: 1123-1136Crossref PubMed Scopus (598) Google Scholar, Lee et al., 2006Lee T.I. Jenner R.G. Boyer L.A. Guenther M.G. Levine S.S. Kumar R.M. Chevalier B. Johnstone S.E. Cole M.F. Isono K. et al.Control of developmental regulators by Polycomb in human embryonic stem cells.Cell. 2006; 125: 301-313Abstract Full Text Full Text PDF PubMed Scopus (1190) Google S" @default.
- W2017050785 created "2016-06-24" @default.
- W2017050785 creator A5057814473 @default.
- W2017050785 date "2011-03-01" @default.
- W2017050785 modified "2023-10-13" @default.
- W2017050785 title "Control of the Embryonic Stem Cell State" @default.
- W2017050785 cites W124269711 @default.
- W2017050785 cites W1608762409 @default.
- W2017050785 cites W1927826942 @default.
- W2017050785 cites W1965428318 @default.
- W2017050785 cites W1966083128 @default.
- W2017050785 cites W1966279806 @default.
- W2017050785 cites W1966758700 @default.
- W2017050785 cites W1967269362 @default.
- W2017050785 cites W1968931043 @default.
- W2017050785 cites W1969270394 @default.
- W2017050785 cites W1971445167 @default.
- W2017050785 cites W1971645224 @default.
- W2017050785 cites W1972013835 @default.
- W2017050785 cites W1972170164 @default.
- W2017050785 cites W1972298775 @default.
- W2017050785 cites W1974365957 @default.
- W2017050785 cites W1974595624 @default.
- W2017050785 cites W1975135992 @default.
- W2017050785 cites W1975200987 @default.
- W2017050785 cites W1975394594 @default.
- W2017050785 cites W1977943782 @default.
- W2017050785 cites W1978967539 @default.
- W2017050785 cites W1981088384 @default.
- W2017050785 cites W1981138517 @default.
- W2017050785 cites W1983159345 @default.
- W2017050785 cites W1984249881 @default.
- W2017050785 cites W1985140771 @default.
- W2017050785 cites W1987390450 @default.
- W2017050785 cites W1987803647 @default.
- W2017050785 cites W1988294855 @default.
- W2017050785 cites W1989736694 @default.
- W2017050785 cites W1990577927 @default.
- W2017050785 cites W1990718295 @default.
- W2017050785 cites W1990868443 @default.
- W2017050785 cites W1991814067 @default.
- W2017050785 cites W1992949513 @default.
- W2017050785 cites W1994142477 @default.
- W2017050785 cites W1994718301 @default.
- W2017050785 cites W1994758141 @default.
- W2017050785 cites W1995547197 @default.
- W2017050785 cites W1996928617 @default.
- W2017050785 cites W1997466838 @default.
- W2017050785 cites W1997630514 @default.
- W2017050785 cites W1999952815 @default.
- W2017050785 cites W2000491188 @default.
- W2017050785 cites W2000825723 @default.
- W2017050785 cites W2001284661 @default.
- W2017050785 cites W2002878543 @default.
- W2017050785 cites W2003207389 @default.
- W2017050785 cites W2003529019 @default.
- W2017050785 cites W2004280138 @default.
- W2017050785 cites W2005437050 @default.
- W2017050785 cites W2006824094 @default.
- W2017050785 cites W2007844697 @default.
- W2017050785 cites W2008027677 @default.
- W2017050785 cites W2008656832 @default.
- W2017050785 cites W2010188939 @default.
- W2017050785 cites W2010790480 @default.
- W2017050785 cites W2010916267 @default.
- W2017050785 cites W2011322953 @default.
- W2017050785 cites W2015396326 @default.
- W2017050785 cites W2018855387 @default.
- W2017050785 cites W2019229253 @default.
- W2017050785 cites W2020363669 @default.
- W2017050785 cites W2020965347 @default.
- W2017050785 cites W2022237004 @default.
- W2017050785 cites W2023116564 @default.
- W2017050785 cites W2023745283 @default.
- W2017050785 cites W2026273242 @default.
- W2017050785 cites W2027127452 @default.
- W2017050785 cites W2027703497 @default.
- W2017050785 cites W2027870104 @default.
- W2017050785 cites W2030523067 @default.
- W2017050785 cites W2032619610 @default.
- W2017050785 cites W2033275964 @default.
- W2017050785 cites W2033381913 @default.
- W2017050785 cites W2033884991 @default.
- W2017050785 cites W2033890654 @default.
- W2017050785 cites W2034235936 @default.
- W2017050785 cites W2034469841 @default.
- W2017050785 cites W2034709147 @default.
- W2017050785 cites W2036326229 @default.
- W2017050785 cites W2036454804 @default.
- W2017050785 cites W2036894680 @default.
- W2017050785 cites W2037064308 @default.
- W2017050785 cites W2037686178 @default.
- W2017050785 cites W2038249969 @default.
- W2017050785 cites W2038657349 @default.
- W2017050785 cites W2045547564 @default.
- W2017050785 cites W2045619208 @default.
- W2017050785 cites W2045634739 @default.
- W2017050785 cites W2049488119 @default.