Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017052029> ?p ?o ?g. }
- W2017052029 endingPage "1188" @default.
- W2017052029 startingPage "1159" @default.
- W2017052029 abstract "The western succession of the Mount Isa basin in northwest Queensland hosts four supergiant Zn-Pb ± Cu deposits and numerous smaller Cu and Zn-Pb deposits. Mineralization is primarily hosted in carbonaceous and calcareous shales and siltstones belonging to the 1670 to 1575 Ma Isa superbasin, but little is known about the source of metals that formed these deposits. The underlying clastic and volcanic successions belonging to the 1800 to 1750 Ma Leichhardt superbasin and the 1735 to 1690 Ma Calvert superbasin are potential metal source rocks and host a variety of diagenetic minerals that preserve geochemical information about the evolution of brines in the basin. Quartz overgrowths and pressure solution features formed during shallow burial in all clastic lithologic units but are particularly common in the well-sorted, marine-dominated units that became aquitards due to the porosity-occluding diagenetic cement. Microthermometry on fluid inclusions in the quartz overgrowths indicates formation between 100° and 174°C from a low-salinity, 2.7 to 9.1 wt percent NaCl equiv fluid (fluid 1). These data together with sequence stratigraphic mapping, basin reconstruction, and stable isotope values from the quartz overgrowths show that the diagenetic aquitards formed at 18 O fluid and δ D fluid values of 4.5 ± 4.2 and −34 ± 14 per mil, respectively, indicating evolution from a seawater-dominated source. Silicate dissolution and the widespread formation of diagenetic illite and chlorite occurred late, during deep burial diagenesis and primarily in the proximal fluvial lithologic units. These units are recognized as diagenetic aquifers and they occur adjacent to and within the Eastern Creek and Fiery Creek Volcanics where metals could have been sourced. Basin reconstruction shows that the diagenetic aquifers formed at depths between 5 and 10 km. Illite and chlorite extracted from the diagenetic aquifers have distinct δ 18 O fluid and δ D fluid values of 4.5 ± 2.8 and −63 ± 11 per mil, respectively, indicating evolution from a meteoric fluid with a variable marine contribution. These isotopic values cannot be differentiated from published isotopic values of fluid inclusion water in quartz-dolomite-chalcopyrite veins at Mount Isa or sphalerite and illite from the Century Zn deposit and the Zn lodes from the Burketown mineral field. This suggests that the diagenetic aquifers were likely source rocks for metals in the deposits in the Mount Isa basin. In contrast to the phyllosilicates in the diagenetic aquifers, regional dolomitic grainstones and dolomudstones in the Lawn Hill platform precipitated from fluids with δ 18 O fluid between −2.6 and 1.1 per mil and δ 13 C fluid between −8.6 and −3.9 per mil. This suggests that these units did not contribute to the ore-forming brines. Quartz veins formed during the later diagenetic history in the Mount Isa basin from a low-salinity brine, between 2.7 and 10.4 wt percent NaCl equiv (fluid 2). Oxygen isotope geothermometry on quartz-hematite pairs indicates that these veins formed at approximately 230°C. Crosscutting relationships reveal that a subsequent generation of quartz veins host fluid inclusions with a distinctly saline brine, with compositions between 11.9 and 23.2 wt percent NaCl equiv (fluid 3), indistinguishable from fluid inclusion compositions recorded in sphalerite from the Century and Walford Creek Zn deposits in the Lawn Hill platform and the quartz-dolomite-chalcopyrite veins at Mount Isa. Some of these quartz veins formed at ca. 400°C, based on quartz-hematite geothermometry, but fluid inclusion homogenization temperatures between 86° and 260°C suggest that another set of quartz veins, also containing high-salinity fluid inclusions, is preserved in the basin but formed at lower temperatures. Irrespective of formation temperature or timing, it is noteworthy that quartz veins hosting high-salinity fluid inclusions have δ 18 O fluid and δ D fluid values that are indistinguishable from those recorded by (1) illite and chlorite in the diagenetic aquifers, (2) fluid inclusion water in sphalerite and synore quartz and illite in the Zn deposits in the Lawn Hill platform, and (3) various alteration minerals from the Mount Isa Cu deposit. Collectively, this suggests that the quartz veins represent fluids that migrated along faults from the diagenetic aquifers during late diagenesis to form the low-temperature Zn-Pb deposits between 1650 and 1575 Ma and later during the Isan orogeny to form the high-temperature Cu deposits. Metamorphic quartz-hematite ± feldspar ± chlorite veins exist in the basin and formed between 325° and 450°C during the Isan orogeny from a brine having salinities between 12.6 and 23.2 wt percent NaCl equiv (fluid 4). These veins have distinct δ 18 O fluid and δ D fluid values of 11.8 ± 2.0 and 30 ± 2 per mil, respectively, consistent with formation from fluids derived from graywackes and arkoses during greenschist facies metamorphism. The last recognized fluid identified in the basin (fluid 5) is only found in secondary fluid inclusions that form trails across earlier formed quartz veins. This fluid was trapped after the Isan orogeny, has a low salinity, between 0.0 and 8.1 wt percent NaCl equiv, records temperatures between 131° and 256°C, and is indistinguishable from postore fluids that have been reported in the Mount Isa Cu deposit and the Zn lodes in the Burketown mineral field." @default.
- W2017052029 created "2016-06-24" @default.
- W2017052029 creator A5013636667 @default.
- W2017052029 creator A5047276477 @default.
- W2017052029 creator A5068067762 @default.
- W2017052029 creator A5068605106 @default.
- W2017052029 date "2006-09-01" @default.
- W2017052029 modified "2023-10-18" @default.
- W2017052029 title "Sandstone Diagenesis in the Mount Isa Basin: An Isotopic and Fluid Inclusion Perspective in Relationship to District-Wide Zn, Pb, and Cu Mineralization" @default.
- W2017052029 cites W1018821534 @default.
- W2017052029 cites W1487952418 @default.
- W2017052029 cites W1533168981 @default.
- W2017052029 cites W1568079719 @default.
- W2017052029 cites W1589388326 @default.
- W2017052029 cites W1593919186 @default.
- W2017052029 cites W1608472473 @default.
- W2017052029 cites W1852086381 @default.
- W2017052029 cites W1964311492 @default.
- W2017052029 cites W1966968468 @default.
- W2017052029 cites W1970658925 @default.
- W2017052029 cites W1970840731 @default.
- W2017052029 cites W1972469323 @default.
- W2017052029 cites W1977841496 @default.
- W2017052029 cites W1978694547 @default.
- W2017052029 cites W1979267674 @default.
- W2017052029 cites W1981056958 @default.
- W2017052029 cites W1981737804 @default.
- W2017052029 cites W1984985823 @default.
- W2017052029 cites W1987315828 @default.
- W2017052029 cites W1995737658 @default.
- W2017052029 cites W1996882657 @default.
- W2017052029 cites W1996905004 @default.
- W2017052029 cites W1999684249 @default.
- W2017052029 cites W2005507069 @default.
- W2017052029 cites W2008281306 @default.
- W2017052029 cites W2008555227 @default.
- W2017052029 cites W2008637847 @default.
- W2017052029 cites W2009466418 @default.
- W2017052029 cites W2011307050 @default.
- W2017052029 cites W2012251221 @default.
- W2017052029 cites W2013448054 @default.
- W2017052029 cites W2014344372 @default.
- W2017052029 cites W2014502918 @default.
- W2017052029 cites W2019795776 @default.
- W2017052029 cites W2025327988 @default.
- W2017052029 cites W2030490193 @default.
- W2017052029 cites W2032174382 @default.
- W2017052029 cites W2037447751 @default.
- W2017052029 cites W2047019335 @default.
- W2017052029 cites W2047280642 @default.
- W2017052029 cites W2048673457 @default.
- W2017052029 cites W2049529252 @default.
- W2017052029 cites W2054829011 @default.
- W2017052029 cites W2056712921 @default.
- W2017052029 cites W2058002642 @default.
- W2017052029 cites W2062709906 @default.
- W2017052029 cites W2063951283 @default.
- W2017052029 cites W2068202901 @default.
- W2017052029 cites W2068211051 @default.
- W2017052029 cites W2068978424 @default.
- W2017052029 cites W2069344026 @default.
- W2017052029 cites W2076355442 @default.
- W2017052029 cites W2085786036 @default.
- W2017052029 cites W2087881480 @default.
- W2017052029 cites W2089668592 @default.
- W2017052029 cites W2089786921 @default.
- W2017052029 cites W2090757504 @default.
- W2017052029 cites W2090947066 @default.
- W2017052029 cites W2092419420 @default.
- W2017052029 cites W2093993062 @default.
- W2017052029 cites W2094642840 @default.
- W2017052029 cites W2107683256 @default.
- W2017052029 cites W2109205858 @default.
- W2017052029 cites W2110176408 @default.
- W2017052029 cites W2110767358 @default.
- W2017052029 cites W2114244687 @default.
- W2017052029 cites W2118382793 @default.
- W2017052029 cites W2121865971 @default.
- W2017052029 cites W2126539599 @default.
- W2017052029 cites W2127044911 @default.
- W2017052029 cites W2131168069 @default.
- W2017052029 cites W2132138546 @default.
- W2017052029 cites W2132147684 @default.
- W2017052029 cites W2133726261 @default.
- W2017052029 cites W2135353906 @default.
- W2017052029 cites W2137398382 @default.
- W2017052029 cites W2140945815 @default.
- W2017052029 cites W2146052026 @default.
- W2017052029 cites W2147909059 @default.
- W2017052029 cites W2153070533 @default.
- W2017052029 cites W2153683271 @default.
- W2017052029 cites W2155578644 @default.
- W2017052029 cites W2155667759 @default.
- W2017052029 cites W2166969158 @default.
- W2017052029 cites W2170782751 @default.
- W2017052029 cites W2225210705 @default.
- W2017052029 cites W2231082333 @default.
- W2017052029 cites W2323863670 @default.