Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017087920> ?p ?o ?g. }
- W2017087920 endingPage "148" @default.
- W2017087920 startingPage "142" @default.
- W2017087920 abstract "A diverse set of 46 covalent organic frameworks (COFs) were collected to computationally predict their separation performance for three industrial gas mixtures, CH4/H2, CO2/H2 and CO2/CH4, using pressure swing adsorption (PSA) process. The results show that COFs outperform most commonly used zeolites and widely studied metal-organic frameworks (MOFs) in the separation of CH4/H2, while have a comparable performance in separating CO2/H2 and CO2/CH4. In addition, microscopic information that is instructive for developing more efficient COFs was obtained by analyzing the relationships between separation performance and framework structures. The results of this work provide useful information that can guide the future design of new COFs with improved performance, as well as demonstrate that COFs are very promising adsorbents in industrial gas separation applications and are worthy of further in-depth study toward practical applications." @default.
- W2017087920 created "2016-06-24" @default.
- W2017087920 creator A5009087397 @default.
- W2017087920 creator A5009527477 @default.
- W2017087920 creator A5068309730 @default.
- W2017087920 date "2015-07-01" @default.
- W2017087920 modified "2023-10-18" @default.
- W2017087920 title "Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations" @default.
- W2017087920 cites W1964320148 @default.
- W2017087920 cites W1968859420 @default.
- W2017087920 cites W1970254968 @default.
- W2017087920 cites W1978286119 @default.
- W2017087920 cites W1989047015 @default.
- W2017087920 cites W1991726147 @default.
- W2017087920 cites W2001504827 @default.
- W2017087920 cites W2001982155 @default.
- W2017087920 cites W2003222550 @default.
- W2017087920 cites W2009806571 @default.
- W2017087920 cites W2016989506 @default.
- W2017087920 cites W2021487825 @default.
- W2017087920 cites W2030971064 @default.
- W2017087920 cites W2031009086 @default.
- W2017087920 cites W2038440906 @default.
- W2017087920 cites W2038477944 @default.
- W2017087920 cites W2044368834 @default.
- W2017087920 cites W2045258228 @default.
- W2017087920 cites W2049541689 @default.
- W2017087920 cites W2051311193 @default.
- W2017087920 cites W2051598873 @default.
- W2017087920 cites W2053557914 @default.
- W2017087920 cites W2058236569 @default.
- W2017087920 cites W2061108165 @default.
- W2017087920 cites W2064477776 @default.
- W2017087920 cites W2078402834 @default.
- W2017087920 cites W2084016219 @default.
- W2017087920 cites W2085822586 @default.
- W2017087920 cites W2091161882 @default.
- W2017087920 cites W2092831067 @default.
- W2017087920 cites W2099486431 @default.
- W2017087920 cites W2105728454 @default.
- W2017087920 cites W2114254264 @default.
- W2017087920 cites W2128787845 @default.
- W2017087920 cites W2141787867 @default.
- W2017087920 cites W2163196683 @default.
- W2017087920 cites W2168614264 @default.
- W2017087920 cites W2323599744 @default.
- W2017087920 cites W2325103942 @default.
- W2017087920 cites W2328962343 @default.
- W2017087920 doi "https://doi.org/10.1016/j.micromeso.2015.02.034" @default.
- W2017087920 hasPublicationYear "2015" @default.
- W2017087920 type Work @default.
- W2017087920 sameAs 2017087920 @default.
- W2017087920 citedByCount "41" @default.
- W2017087920 countsByYear W20170879202015 @default.
- W2017087920 countsByYear W20170879202016 @default.
- W2017087920 countsByYear W20170879202017 @default.
- W2017087920 countsByYear W20170879202018 @default.
- W2017087920 countsByYear W20170879202019 @default.
- W2017087920 countsByYear W20170879202020 @default.
- W2017087920 countsByYear W20170879202021 @default.
- W2017087920 countsByYear W20170879202022 @default.
- W2017087920 countsByYear W20170879202023 @default.
- W2017087920 crossrefType "journal-article" @default.
- W2017087920 hasAuthorship W2017087920A5009087397 @default.
- W2017087920 hasAuthorship W2017087920A5009527477 @default.
- W2017087920 hasAuthorship W2017087920A5068309730 @default.
- W2017087920 hasConcept C111919701 @default.
- W2017087920 hasConcept C127413603 @default.
- W2017087920 hasConcept C150394285 @default.
- W2017087920 hasConcept C171250308 @default.
- W2017087920 hasConcept C178790620 @default.
- W2017087920 hasConcept C179366358 @default.
- W2017087920 hasConcept C180577832 @default.
- W2017087920 hasConcept C18411161 @default.
- W2017087920 hasConcept C185592680 @default.
- W2017087920 hasConcept C192562407 @default.
- W2017087920 hasConcept C201416721 @default.
- W2017087920 hasConcept C21880701 @default.
- W2017087920 hasConcept C2780232233 @default.
- W2017087920 hasConcept C41008148 @default.
- W2017087920 hasConcept C41625074 @default.
- W2017087920 hasConcept C43617362 @default.
- W2017087920 hasConcept C516920438 @default.
- W2017087920 hasConcept C55493867 @default.
- W2017087920 hasConcept C98045186 @default.
- W2017087920 hasConceptScore W2017087920C111919701 @default.
- W2017087920 hasConceptScore W2017087920C127413603 @default.
- W2017087920 hasConceptScore W2017087920C150394285 @default.
- W2017087920 hasConceptScore W2017087920C171250308 @default.
- W2017087920 hasConceptScore W2017087920C178790620 @default.
- W2017087920 hasConceptScore W2017087920C179366358 @default.
- W2017087920 hasConceptScore W2017087920C180577832 @default.
- W2017087920 hasConceptScore W2017087920C18411161 @default.
- W2017087920 hasConceptScore W2017087920C185592680 @default.
- W2017087920 hasConceptScore W2017087920C192562407 @default.
- W2017087920 hasConceptScore W2017087920C201416721 @default.
- W2017087920 hasConceptScore W2017087920C21880701 @default.
- W2017087920 hasConceptScore W2017087920C2780232233 @default.