Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017108778> ?p ?o ?g. }
- W2017108778 endingPage "37" @default.
- W2017108778 startingPage "29" @default.
- W2017108778 abstract "Daily solar power prediction using data-driven approaches is studied. Four famous data-driven approaches, the Artificial Neural Network (ANN), the Support Vector Machine (SVM), the k-nearest neighbor (kNN), and the multivariate linear regression (MLR), are applied to develop the prediction models. The persistent model is considered as a baseline for evaluating the effectiveness of data-driven approaches. A procedure of selecting input parameters for solar power prediction models is addressed. Two modeling scenarios, including and excluding meteorological parameters as inputs, are assessed in the model development. A comparative analysis of the data-driven algorithms is conducted. The capability of data-driven models in multi-step ahead prediction is examined. The computational results indicate that none of the algorithms can outperform others in all considered prediction scenarios." @default.
- W2017108778 created "2016-06-24" @default.
- W2017108778 creator A5018039614 @default.
- W2017108778 creator A5029830698 @default.
- W2017108778 creator A5082849266 @default.
- W2017108778 date "2014-08-01" @default.
- W2017108778 modified "2023-10-03" @default.
- W2017108778 title "Analysis of daily solar power prediction with data-driven approaches" @default.
- W2017108778 cites W1964357740 @default.
- W2017108778 cites W1966391855 @default.
- W2017108778 cites W1971955694 @default.
- W2017108778 cites W1973396515 @default.
- W2017108778 cites W1977746199 @default.
- W2017108778 cites W1979221753 @default.
- W2017108778 cites W1981176609 @default.
- W2017108778 cites W1981401850 @default.
- W2017108778 cites W1985223473 @default.
- W2017108778 cites W1988783242 @default.
- W2017108778 cites W1988989532 @default.
- W2017108778 cites W1993687984 @default.
- W2017108778 cites W2001670246 @default.
- W2017108778 cites W2008697060 @default.
- W2017108778 cites W2010951708 @default.
- W2017108778 cites W2017643032 @default.
- W2017108778 cites W2027304952 @default.
- W2017108778 cites W2027537775 @default.
- W2017108778 cites W2029602541 @default.
- W2017108778 cites W2029620114 @default.
- W2017108778 cites W2032007905 @default.
- W2017108778 cites W2037225323 @default.
- W2017108778 cites W2041716774 @default.
- W2017108778 cites W2042511026 @default.
- W2017108778 cites W2064469609 @default.
- W2017108778 cites W2069673223 @default.
- W2017108778 cites W2070826863 @default.
- W2017108778 cites W2079547580 @default.
- W2017108778 cites W2079610614 @default.
- W2017108778 cites W2088874310 @default.
- W2017108778 cites W2120871928 @default.
- W2017108778 cites W2122284941 @default.
- W2017108778 cites W2129270932 @default.
- W2017108778 cites W4244238212 @default.
- W2017108778 doi "https://doi.org/10.1016/j.apenergy.2014.03.084" @default.
- W2017108778 hasPublicationYear "2014" @default.
- W2017108778 type Work @default.
- W2017108778 sameAs 2017108778 @default.
- W2017108778 citedByCount "110" @default.
- W2017108778 countsByYear W20171087782014 @default.
- W2017108778 countsByYear W20171087782015 @default.
- W2017108778 countsByYear W20171087782016 @default.
- W2017108778 countsByYear W20171087782017 @default.
- W2017108778 countsByYear W20171087782018 @default.
- W2017108778 countsByYear W20171087782019 @default.
- W2017108778 countsByYear W20171087782020 @default.
- W2017108778 countsByYear W20171087782021 @default.
- W2017108778 countsByYear W20171087782022 @default.
- W2017108778 countsByYear W20171087782023 @default.
- W2017108778 crossrefType "journal-article" @default.
- W2017108778 hasAuthorship W2017108778A5018039614 @default.
- W2017108778 hasAuthorship W2017108778A5029830698 @default.
- W2017108778 hasAuthorship W2017108778A5082849266 @default.
- W2017108778 hasConcept C111472728 @default.
- W2017108778 hasConcept C119857082 @default.
- W2017108778 hasConcept C121332964 @default.
- W2017108778 hasConcept C12267149 @default.
- W2017108778 hasConcept C124101348 @default.
- W2017108778 hasConcept C138885662 @default.
- W2017108778 hasConcept C154945302 @default.
- W2017108778 hasConcept C161584116 @default.
- W2017108778 hasConcept C163258240 @default.
- W2017108778 hasConcept C2777618391 @default.
- W2017108778 hasConcept C2778136018 @default.
- W2017108778 hasConcept C2780440489 @default.
- W2017108778 hasConcept C41008148 @default.
- W2017108778 hasConcept C45804977 @default.
- W2017108778 hasConcept C50644808 @default.
- W2017108778 hasConcept C62520636 @default.
- W2017108778 hasConcept C67186912 @default.
- W2017108778 hasConcept C77088390 @default.
- W2017108778 hasConceptScore W2017108778C111472728 @default.
- W2017108778 hasConceptScore W2017108778C119857082 @default.
- W2017108778 hasConceptScore W2017108778C121332964 @default.
- W2017108778 hasConceptScore W2017108778C12267149 @default.
- W2017108778 hasConceptScore W2017108778C124101348 @default.
- W2017108778 hasConceptScore W2017108778C138885662 @default.
- W2017108778 hasConceptScore W2017108778C154945302 @default.
- W2017108778 hasConceptScore W2017108778C161584116 @default.
- W2017108778 hasConceptScore W2017108778C163258240 @default.
- W2017108778 hasConceptScore W2017108778C2777618391 @default.
- W2017108778 hasConceptScore W2017108778C2778136018 @default.
- W2017108778 hasConceptScore W2017108778C2780440489 @default.
- W2017108778 hasConceptScore W2017108778C41008148 @default.
- W2017108778 hasConceptScore W2017108778C45804977 @default.
- W2017108778 hasConceptScore W2017108778C50644808 @default.
- W2017108778 hasConceptScore W2017108778C62520636 @default.
- W2017108778 hasConceptScore W2017108778C67186912 @default.
- W2017108778 hasConceptScore W2017108778C77088390 @default.
- W2017108778 hasLocation W20171087781 @default.