Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017130421> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2017130421 abstract "Prediction of energy requirement is an important research topic. For fulfilling such prediction, neural network (NN) has testified to be a cost-effective technique superior to traditional statistical methods. But their training usually with back-propagation (BP) algorithm or other gradient algorithms, and some problems are frequently encountered in the use of these algorithms. In this paper, particle swarm optimization (PSO) is proposed to train artificial neural networks (ANN), and as a result, a PSO-based neural network approach is presented. The approach is demonstrated by predicting energy requirement in Xipsilaan city in China. The results show that the proposed approach can effectively improve convergence speed and generalization ability of NN." @default.
- W2017130421 created "2016-06-24" @default.
- W2017130421 creator A5010435765 @default.
- W2017130421 creator A5045019495 @default.
- W2017130421 date "2008-06-01" @default.
- W2017130421 modified "2023-09-27" @default.
- W2017130421 title "Applying Neural Network with Particle Swarm Optimization for Energy Requirement Prediction" @default.
- W2017130421 cites W2094840640 @default.
- W2017130421 cites W2141249818 @default.
- W2017130421 cites W2169245194 @default.
- W2017130421 doi "https://doi.org/10.1109/wcica.2008.4594562" @default.
- W2017130421 hasPublicationYear "2008" @default.
- W2017130421 type Work @default.
- W2017130421 sameAs 2017130421 @default.
- W2017130421 citedByCount "1" @default.
- W2017130421 countsByYear W20171304212014 @default.
- W2017130421 crossrefType "proceedings-article" @default.
- W2017130421 hasAuthorship W2017130421A5010435765 @default.
- W2017130421 hasAuthorship W2017130421A5045019495 @default.
- W2017130421 hasConcept C105795698 @default.
- W2017130421 hasConcept C11413529 @default.
- W2017130421 hasConcept C119857082 @default.
- W2017130421 hasConcept C126255220 @default.
- W2017130421 hasConcept C134306372 @default.
- W2017130421 hasConcept C154945302 @default.
- W2017130421 hasConcept C155032097 @default.
- W2017130421 hasConcept C162324750 @default.
- W2017130421 hasConcept C177148314 @default.
- W2017130421 hasConcept C186370098 @default.
- W2017130421 hasConcept C2777303404 @default.
- W2017130421 hasConcept C33923547 @default.
- W2017130421 hasConcept C41008148 @default.
- W2017130421 hasConcept C50522688 @default.
- W2017130421 hasConcept C50644808 @default.
- W2017130421 hasConcept C85617194 @default.
- W2017130421 hasConceptScore W2017130421C105795698 @default.
- W2017130421 hasConceptScore W2017130421C11413529 @default.
- W2017130421 hasConceptScore W2017130421C119857082 @default.
- W2017130421 hasConceptScore W2017130421C126255220 @default.
- W2017130421 hasConceptScore W2017130421C134306372 @default.
- W2017130421 hasConceptScore W2017130421C154945302 @default.
- W2017130421 hasConceptScore W2017130421C155032097 @default.
- W2017130421 hasConceptScore W2017130421C162324750 @default.
- W2017130421 hasConceptScore W2017130421C177148314 @default.
- W2017130421 hasConceptScore W2017130421C186370098 @default.
- W2017130421 hasConceptScore W2017130421C2777303404 @default.
- W2017130421 hasConceptScore W2017130421C33923547 @default.
- W2017130421 hasConceptScore W2017130421C41008148 @default.
- W2017130421 hasConceptScore W2017130421C50522688 @default.
- W2017130421 hasConceptScore W2017130421C50644808 @default.
- W2017130421 hasConceptScore W2017130421C85617194 @default.
- W2017130421 hasLocation W20171304211 @default.
- W2017130421 hasOpenAccess W2017130421 @default.
- W2017130421 hasPrimaryLocation W20171304211 @default.
- W2017130421 hasRelatedWork W1489050811 @default.
- W2017130421 hasRelatedWork W1533959244 @default.
- W2017130421 hasRelatedWork W1965678419 @default.
- W2017130421 hasRelatedWork W1971541091 @default.
- W2017130421 hasRelatedWork W2350832155 @default.
- W2017130421 hasRelatedWork W2372421705 @default.
- W2017130421 hasRelatedWork W2387682723 @default.
- W2017130421 hasRelatedWork W4205702489 @default.
- W2017130421 hasRelatedWork W4309324438 @default.
- W2017130421 hasRelatedWork W3123533727 @default.
- W2017130421 isParatext "false" @default.
- W2017130421 isRetracted "false" @default.
- W2017130421 magId "2017130421" @default.
- W2017130421 workType "article" @default.