Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017132056> ?p ?o ?g. }
- W2017132056 endingPage "4647" @default.
- W2017132056 startingPage "4638" @default.
- W2017132056 abstract "With the many protein sequences coming from the genome sequencing projects, it is unlikely that we will ever have an atomic resolution structure of every relevant protein. With high throughput crystallography, however, we will soon have representative structures for the vast majority of protein families. Thus the drug discovery and design process will rely heavily on protein modeling to address issues such as designing combinatorial libraries for an entire class of targets and engineering genome-wide selectivity over a target class. In this study we assess the value of high throughput docking into homology models. To do this we dock a database of random compounds seeded with known inhibitors into homology models of six different kinases. In five of the six cases the known inhibitors were found to be enriched by factors of 4-5 in the top 5% of the overall scored and ranked compounds. Furthermore, in the same five cases the known inhibitors were found to be enriched by factors of 2-3 in the top 5% of the scored and ranked known kinase inhibitors, thus showing that the homology models can pick up some of the crucial selectivity information." @default.
- W2017132056 created "2016-06-24" @default.
- W2017132056 creator A5048934561 @default.
- W2017132056 creator A5058404854 @default.
- W2017132056 date "2003-09-20" @default.
- W2017132056 modified "2023-10-04" @default.
- W2017132056 title "Kinases, Homology Models, and High Throughput Docking" @default.
- W2017132056 cites W1524096981 @default.
- W2017132056 cites W1639582946 @default.
- W2017132056 cites W1964203908 @default.
- W2017132056 cites W1966746671 @default.
- W2017132056 cites W1972169338 @default.
- W2017132056 cites W1977467384 @default.
- W2017132056 cites W1978329718 @default.
- W2017132056 cites W1980292635 @default.
- W2017132056 cites W1993560396 @default.
- W2017132056 cites W1998224305 @default.
- W2017132056 cites W1999430357 @default.
- W2017132056 cites W2005904989 @default.
- W2017132056 cites W2007486560 @default.
- W2017132056 cites W2015786768 @default.
- W2017132056 cites W2016032857 @default.
- W2017132056 cites W2017091728 @default.
- W2017132056 cites W2018053202 @default.
- W2017132056 cites W2021497478 @default.
- W2017132056 cites W2026415908 @default.
- W2017132056 cites W2030205108 @default.
- W2017132056 cites W2033077711 @default.
- W2017132056 cites W2033444434 @default.
- W2017132056 cites W2034283748 @default.
- W2017132056 cites W2042076664 @default.
- W2017132056 cites W2066142272 @default.
- W2017132056 cites W2066498455 @default.
- W2017132056 cites W2067458955 @default.
- W2017132056 cites W2068784826 @default.
- W2017132056 cites W2071029740 @default.
- W2017132056 cites W2078959008 @default.
- W2017132056 cites W2079127998 @default.
- W2017132056 cites W2079977309 @default.
- W2017132056 cites W2096950509 @default.
- W2017132056 cites W2130479394 @default.
- W2017132056 cites W2131174104 @default.
- W2017132056 cites W2133051701 @default.
- W2017132056 cites W2160230313 @default.
- W2017132056 cites W2163312887 @default.
- W2017132056 cites W2166393142 @default.
- W2017132056 cites W2174384846 @default.
- W2017132056 cites W2949496522 @default.
- W2017132056 cites W2950029530 @default.
- W2017132056 cites W2951803487 @default.
- W2017132056 doi "https://doi.org/10.1021/jm020503a" @default.
- W2017132056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14561083" @default.
- W2017132056 hasPublicationYear "2003" @default.
- W2017132056 type Work @default.
- W2017132056 sameAs 2017132056 @default.
- W2017132056 citedByCount "108" @default.
- W2017132056 countsByYear W20171320562012 @default.
- W2017132056 countsByYear W20171320562013 @default.
- W2017132056 countsByYear W20171320562014 @default.
- W2017132056 countsByYear W20171320562015 @default.
- W2017132056 countsByYear W20171320562016 @default.
- W2017132056 countsByYear W20171320562018 @default.
- W2017132056 countsByYear W20171320562019 @default.
- W2017132056 countsByYear W20171320562020 @default.
- W2017132056 countsByYear W20171320562021 @default.
- W2017132056 countsByYear W20171320562022 @default.
- W2017132056 countsByYear W20171320562023 @default.
- W2017132056 crossrefType "journal-article" @default.
- W2017132056 hasAuthorship W2017132056A5048934561 @default.
- W2017132056 hasAuthorship W2017132056A5058404854 @default.
- W2017132056 hasConcept C103697762 @default.
- W2017132056 hasConcept C104317684 @default.
- W2017132056 hasConcept C127313418 @default.
- W2017132056 hasConcept C141231307 @default.
- W2017132056 hasConcept C159110408 @default.
- W2017132056 hasConcept C165525559 @default.
- W2017132056 hasConcept C167625842 @default.
- W2017132056 hasConcept C169627665 @default.
- W2017132056 hasConcept C181199279 @default.
- W2017132056 hasConcept C184235292 @default.
- W2017132056 hasConcept C185592680 @default.
- W2017132056 hasConcept C2779315201 @default.
- W2017132056 hasConcept C3020199158 @default.
- W2017132056 hasConcept C41685203 @default.
- W2017132056 hasConcept C55493867 @default.
- W2017132056 hasConcept C62649853 @default.
- W2017132056 hasConcept C70721500 @default.
- W2017132056 hasConcept C71924100 @default.
- W2017132056 hasConcept C74187038 @default.
- W2017132056 hasConcept C86803240 @default.
- W2017132056 hasConcept C93073132 @default.
- W2017132056 hasConceptScore W2017132056C103697762 @default.
- W2017132056 hasConceptScore W2017132056C104317684 @default.
- W2017132056 hasConceptScore W2017132056C127313418 @default.
- W2017132056 hasConceptScore W2017132056C141231307 @default.
- W2017132056 hasConceptScore W2017132056C159110408 @default.
- W2017132056 hasConceptScore W2017132056C165525559 @default.
- W2017132056 hasConceptScore W2017132056C167625842 @default.