Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017141000> ?p ?o ?g. }
- W2017141000 endingPage "1111" @default.
- W2017141000 startingPage "1081" @default.
- W2017141000 abstract "We present an inversion method for 3D electrical imaging in media with an inhomogeneous and anisotropic conductivity distribution. The conductivity distribution is discretized via finite elements and is described by a second-order tensor at each finite element node. The inversion method is formulated as a functional optimization with an error functional containing terms measuring data misfit and model covariance by means of smoothness, anisotropy and deviation from a starting model. Including the model covariance information overcomes the problem of ill-posedness at the expense of limiting the allowed models to the class of models which are compatible with the provided model covariance information. The discretized form of the error functional is minimized by a Levenberg–Marquardt type method using an iterative preconditioned conjugate gradient solver. The use of an iterative solver allows one to bypass the actual computation of the Jacobian or an inverse system matrix. The use of a memory efficient iterative solver together with the implementation on parallel computers allows large-scale inverse problems, comprising several hundred thousand nodes with hundreds of sources and receivers, to be solved. The new method is tested using computer-generated data from two- and three-dimensional synthetic models. For each inversion a choice of penalty parameters, gauging the level of model covariance information imposed, has to be made and the level of regularization required is hard to estimate. We find that running a suite of inversions with varying penalty parameters and subsequent examination of the results (including inspection of residual maps) offers a viable method for choosing appropriate numerical values for the penalty levels. In the applications we found the inversion process to be highly non-linear. Inversion models from intermediate steps of the iterative inversion show structure in places that do not exhibit structure in the true model and only at later iterations do anomalies move to the correct location in the modelling domain. This result indicates that linearized inversions that fail to re-linearize during the inversion process will fail to find meaningful inversion images. The inversion images achieved using the new method recover the important features of the true models, including the approximate magnitudes of the conductivity anomalies and the magnitudes and directions of anisotropy anomalies. The inversion images are generally 'blurred', that is sharp edges are smoothed, and the recovered magnitudes of conductivity, anisotropy and anisotropy direction are generally under-estimated." @default.
- W2017141000 created "2016-06-24" @default.
- W2017141000 creator A5005839596 @default.
- W2017141000 creator A5037926058 @default.
- W2017141000 creator A5064191556 @default.
- W2017141000 creator A5083832249 @default.
- W2017141000 creator A5084980885 @default.
- W2017141000 date "2003-09-05" @default.
- W2017141000 modified "2023-10-10" @default.
- W2017141000 title "Anisotropic resistivity inversion" @default.
- W2017141000 cites W1967898444 @default.
- W2017141000 cites W1971334014 @default.
- W2017141000 cites W1974916294 @default.
- W2017141000 cites W1976784524 @default.
- W2017141000 cites W1988041530 @default.
- W2017141000 cites W2003361868 @default.
- W2017141000 cites W2003700346 @default.
- W2017141000 cites W2005681075 @default.
- W2017141000 cites W2019433708 @default.
- W2017141000 cites W2024546002 @default.
- W2017141000 cites W2027547498 @default.
- W2017141000 cites W2039713947 @default.
- W2017141000 cites W2040741110 @default.
- W2017141000 cites W2054962225 @default.
- W2017141000 cites W2055132920 @default.
- W2017141000 cites W2071134106 @default.
- W2017141000 cites W2071465807 @default.
- W2017141000 cites W2072698331 @default.
- W2017141000 cites W2083822644 @default.
- W2017141000 cites W2114806603 @default.
- W2017141000 cites W2117787573 @default.
- W2017141000 cites W2121238988 @default.
- W2017141000 cites W2122338841 @default.
- W2017141000 cites W2131732249 @default.
- W2017141000 cites W2132220437 @default.
- W2017141000 cites W2135249463 @default.
- W2017141000 cites W2142552253 @default.
- W2017141000 cites W2148357326 @default.
- W2017141000 cites W2150141649 @default.
- W2017141000 cites W2152242052 @default.
- W2017141000 cites W2152538634 @default.
- W2017141000 cites W2157616289 @default.
- W2017141000 cites W4229692140 @default.
- W2017141000 doi "https://doi.org/10.1088/0266-5611/19/5/306" @default.
- W2017141000 hasPublicationYear "2003" @default.
- W2017141000 type Work @default.
- W2017141000 sameAs 2017141000 @default.
- W2017141000 citedByCount "60" @default.
- W2017141000 countsByYear W20171410002012 @default.
- W2017141000 countsByYear W20171410002013 @default.
- W2017141000 countsByYear W20171410002014 @default.
- W2017141000 countsByYear W20171410002015 @default.
- W2017141000 countsByYear W20171410002016 @default.
- W2017141000 countsByYear W20171410002017 @default.
- W2017141000 countsByYear W20171410002018 @default.
- W2017141000 countsByYear W20171410002020 @default.
- W2017141000 countsByYear W20171410002021 @default.
- W2017141000 countsByYear W20171410002022 @default.
- W2017141000 countsByYear W20171410002023 @default.
- W2017141000 crossrefType "journal-article" @default.
- W2017141000 hasAuthorship W2017141000A5005839596 @default.
- W2017141000 hasAuthorship W2017141000A5037926058 @default.
- W2017141000 hasAuthorship W2017141000A5064191556 @default.
- W2017141000 hasAuthorship W2017141000A5083832249 @default.
- W2017141000 hasAuthorship W2017141000A5084980885 @default.
- W2017141000 hasConcept C105795698 @default.
- W2017141000 hasConcept C109007969 @default.
- W2017141000 hasConcept C11413529 @default.
- W2017141000 hasConcept C121332964 @default.
- W2017141000 hasConcept C126255220 @default.
- W2017141000 hasConcept C134306372 @default.
- W2017141000 hasConcept C135252773 @default.
- W2017141000 hasConcept C135628077 @default.
- W2017141000 hasConcept C151730666 @default.
- W2017141000 hasConcept C155512373 @default.
- W2017141000 hasConcept C159694833 @default.
- W2017141000 hasConcept C178650346 @default.
- W2017141000 hasConcept C1893757 @default.
- W2017141000 hasConcept C200331156 @default.
- W2017141000 hasConcept C2778770139 @default.
- W2017141000 hasConcept C28826006 @default.
- W2017141000 hasConcept C33923547 @default.
- W2017141000 hasConcept C41008148 @default.
- W2017141000 hasConcept C73000952 @default.
- W2017141000 hasConcept C81184566 @default.
- W2017141000 hasConcept C86803240 @default.
- W2017141000 hasConcept C97355855 @default.
- W2017141000 hasConceptScore W2017141000C105795698 @default.
- W2017141000 hasConceptScore W2017141000C109007969 @default.
- W2017141000 hasConceptScore W2017141000C11413529 @default.
- W2017141000 hasConceptScore W2017141000C121332964 @default.
- W2017141000 hasConceptScore W2017141000C126255220 @default.
- W2017141000 hasConceptScore W2017141000C134306372 @default.
- W2017141000 hasConceptScore W2017141000C135252773 @default.
- W2017141000 hasConceptScore W2017141000C135628077 @default.
- W2017141000 hasConceptScore W2017141000C151730666 @default.
- W2017141000 hasConceptScore W2017141000C155512373 @default.
- W2017141000 hasConceptScore W2017141000C159694833 @default.