Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017145427> ?p ?o ?g. }
- W2017145427 endingPage "112" @default.
- W2017145427 startingPage "101" @default.
- W2017145427 abstract "Abstract Many landslide conditioning factors have been considered in the literature for landslide susceptibility mapping, but it is not certain which factors produce the best result for an area under analysis. With the availability of increasing number of landslide conditioning factors, finding the best combination of factors has become an important research issue. In this study, genetic algorithms (GAs) were applied to find the best factor combination among 16 factors available for the study area, Macka District of Trabzon, Turkey. Performances of the models including 4 to 15 factors were evaluated using logistic regression to investigate the effect of varying number of factors and the most effective factors were determined. Results showed that prediction accuracy of the models constructed with GA-selected factors increased to a certain level (up to 8 factors) and then showed a stable trend producing statistically similar results. In order to show the robustness of the GA algorithm, prediction performances of the models constructed with 4 to 8 factors determined by the GA were compared with those of models constructed with factor combinations applied in the literature. While slope, lithology and distance to drainage were found to be the most effective factors, soil depth, slope length and profile curvature were found to be the least effective ones. It was also found that the models determined by the GA generally produced better results than user's models. Also, the goodness of the GA-based models was confirmed by success rate curve analysis and McNemar's test. In summary, results revealed the robustness of the GA when searching the optimal landslide conditioning factors among a large number of factors." @default.
- W2017145427 created "2016-06-24" @default.
- W2017145427 creator A5000302556 @default.
- W2017145427 creator A5046223798 @default.
- W2017145427 creator A5067894664 @default.
- W2017145427 date "2015-06-01" @default.
- W2017145427 modified "2023-10-17" @default.
- W2017145427 title "Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm" @default.
- W2017145427 cites W1680670471 @default.
- W2017145427 cites W1970972394 @default.
- W2017145427 cites W1971250664 @default.
- W2017145427 cites W1971725995 @default.
- W2017145427 cites W1973249074 @default.
- W2017145427 cites W1979408254 @default.
- W2017145427 cites W1979486410 @default.
- W2017145427 cites W1989158271 @default.
- W2017145427 cites W1991384931 @default.
- W2017145427 cites W1993175915 @default.
- W2017145427 cites W1994214164 @default.
- W2017145427 cites W1994336791 @default.
- W2017145427 cites W2001535969 @default.
- W2017145427 cites W2006690683 @default.
- W2017145427 cites W2008504358 @default.
- W2017145427 cites W2018557450 @default.
- W2017145427 cites W2018612134 @default.
- W2017145427 cites W2020716065 @default.
- W2017145427 cites W2020924270 @default.
- W2017145427 cites W2023203753 @default.
- W2017145427 cites W2025248490 @default.
- W2017145427 cites W2028905613 @default.
- W2017145427 cites W2036881582 @default.
- W2017145427 cites W2039985772 @default.
- W2017145427 cites W2042951326 @default.
- W2017145427 cites W2053449690 @default.
- W2017145427 cites W2056214587 @default.
- W2017145427 cites W2061759157 @default.
- W2017145427 cites W2073755771 @default.
- W2017145427 cites W2075226550 @default.
- W2017145427 cites W2075513266 @default.
- W2017145427 cites W2079185991 @default.
- W2017145427 cites W2086092135 @default.
- W2017145427 cites W2088730795 @default.
- W2017145427 cites W2091455951 @default.
- W2017145427 cites W2093678292 @default.
- W2017145427 cites W2098057602 @default.
- W2017145427 cites W2101121500 @default.
- W2017145427 cites W2113746882 @default.
- W2017145427 cites W2115820600 @default.
- W2017145427 cites W2134070704 @default.
- W2017145427 cites W2134955829 @default.
- W2017145427 cites W2147373555 @default.
- W2017145427 cites W2162489814 @default.
- W2017145427 cites W2236234032 @default.
- W2017145427 cites W2326093958 @default.
- W2017145427 cites W2806372340 @default.
- W2017145427 doi "https://doi.org/10.1016/j.enggeo.2015.04.004" @default.
- W2017145427 hasPublicationYear "2015" @default.
- W2017145427 type Work @default.
- W2017145427 sameAs 2017145427 @default.
- W2017145427 citedByCount "133" @default.
- W2017145427 countsByYear W20171454272015 @default.
- W2017145427 countsByYear W20171454272016 @default.
- W2017145427 countsByYear W20171454272017 @default.
- W2017145427 countsByYear W20171454272018 @default.
- W2017145427 countsByYear W20171454272019 @default.
- W2017145427 countsByYear W20171454272020 @default.
- W2017145427 countsByYear W20171454272021 @default.
- W2017145427 countsByYear W20171454272022 @default.
- W2017145427 countsByYear W20171454272023 @default.
- W2017145427 crossrefType "journal-article" @default.
- W2017145427 hasAuthorship W2017145427A5000302556 @default.
- W2017145427 hasAuthorship W2017145427A5046223798 @default.
- W2017145427 hasAuthorship W2017145427A5067894664 @default.
- W2017145427 hasConcept C105795698 @default.
- W2017145427 hasConcept C11413529 @default.
- W2017145427 hasConcept C126255220 @default.
- W2017145427 hasConcept C127313418 @default.
- W2017145427 hasConcept C186295008 @default.
- W2017145427 hasConcept C187320778 @default.
- W2017145427 hasConcept C33923547 @default.
- W2017145427 hasConcept C41008148 @default.
- W2017145427 hasConcept C45262634 @default.
- W2017145427 hasConcept C8880873 @default.
- W2017145427 hasConceptScore W2017145427C105795698 @default.
- W2017145427 hasConceptScore W2017145427C11413529 @default.
- W2017145427 hasConceptScore W2017145427C126255220 @default.
- W2017145427 hasConceptScore W2017145427C127313418 @default.
- W2017145427 hasConceptScore W2017145427C186295008 @default.
- W2017145427 hasConceptScore W2017145427C187320778 @default.
- W2017145427 hasConceptScore W2017145427C33923547 @default.
- W2017145427 hasConceptScore W2017145427C41008148 @default.
- W2017145427 hasConceptScore W2017145427C45262634 @default.
- W2017145427 hasConceptScore W2017145427C8880873 @default.
- W2017145427 hasLocation W20171454271 @default.
- W2017145427 hasOpenAccess W2017145427 @default.
- W2017145427 hasPrimaryLocation W20171454271 @default.
- W2017145427 hasRelatedWork W1971903373 @default.
- W2017145427 hasRelatedWork W2031965237 @default.