Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017148905> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2017148905 endingPage "43" @default.
- W2017148905 startingPage "33" @default.
- W2017148905 abstract "The evaluation of jaw bone trabecular structure and quality could be useful for characterization and response of the bone for dental implants. Current clinical methods for assessment of bone quality at the implant sites largely depend on assessing bone mineral density using Dual energy X-ray absorptionometry. However, this does not provide any information about bone structure which is considered to be an equally important factor in assessing bone quality. This paper presents a novel approach for computer analysis of trabecular (or cancellous) bone structure using multiresolution based texture analysis to evaluate changes taking place in the architecture of bone with age and gender. The findings are compared with Hounsfield Units measured from the CT machine at different sites, which is a standard reference. Fifty patients were subjected to clinical CT to obtain the CT number and texture based architectural parameters respectively. In each site texture features were extracted using gray level co-occurrence matrices (GLCM), Run length matrices, Histogram and curvelet based statistical & co occurrence analysis. A very difficult problem in classification techniques is the choice of features to distinguish between classes. However the performance of any classifier is not optimized when all features are used. The feature optimization problem is addressed using Principle component analysis in terms of the best recognition rate and the optimal number of features. Testing this on a series of 120 image sections of trabecular bone with normal, partial and total edentulous patients correctly classified over 90% of the porous bone group with an overall accuracy of 87.8%-95.2%.The results shows that by using the Classification & Regression Tree approach the combination of the features from gray level and Ist order statistics achieved overall classification accuracy in the range of 87.8- 90.24%. Features selected from the curvelet based co occurrence matrix performed better with overall classification accuracy of 92.89%.In order to increase the success rate the classification is done using the combination of curvelet statistical features and curvelet co occurrence features as feature vector and using this, a mean success rate of 95.2% is obtained. Keywords: Multiresolution analysis; Texture features; curvelets; Computed Tomography; Regression analysis; GLRLM. DOI: 10.3329/bjms.v9i1.5229 Bangladesh Journal of Medical Science Vol.09 No.1 Jan 2010 33-43" @default.
- W2017148905 created "2016-06-24" @default.
- W2017148905 creator A5021133147 @default.
- W2017148905 creator A5039543591 @default.
- W2017148905 date "1970-01-01" @default.
- W2017148905 modified "2023-09-24" @default.
- W2017148905 title "Segmentation and Classification of Jaw Bone CT images using Curvelet based Texture features" @default.
- W2017148905 cites W140628899 @default.
- W2017148905 cites W1848359330 @default.
- W2017148905 cites W1969334819 @default.
- W2017148905 cites W1994967090 @default.
- W2017148905 cites W2034275067 @default.
- W2017148905 cites W2069912449 @default.
- W2017148905 cites W2115528090 @default.
- W2017148905 cites W2132456997 @default.
- W2017148905 cites W2135346934 @default.
- W2017148905 cites W2135512264 @default.
- W2017148905 cites W2135587550 @default.
- W2017148905 cites W2158576618 @default.
- W2017148905 cites W2161811007 @default.
- W2017148905 cites W3461475 @default.
- W2017148905 cites W2231035919 @default.
- W2017148905 cites W2897016020 @default.
- W2017148905 doi "https://doi.org/10.3329/bjms.v9i1.5229" @default.
- W2017148905 hasPublicationYear "1970" @default.
- W2017148905 type Work @default.
- W2017148905 sameAs 2017148905 @default.
- W2017148905 citedByCount "4" @default.
- W2017148905 countsByYear W20171489052013 @default.
- W2017148905 countsByYear W20171489052019 @default.
- W2017148905 countsByYear W20171489052022 @default.
- W2017148905 countsByYear W20171489052023 @default.
- W2017148905 crossrefType "journal-article" @default.
- W2017148905 hasAuthorship W2017148905A5021133147 @default.
- W2017148905 hasAuthorship W2017148905A5039543591 @default.
- W2017148905 hasBestOaLocation W20171489051 @default.
- W2017148905 hasConcept C115961682 @default.
- W2017148905 hasConcept C124504099 @default.
- W2017148905 hasConcept C126838900 @default.
- W2017148905 hasConcept C131720326 @default.
- W2017148905 hasConcept C138885662 @default.
- W2017148905 hasConcept C142724271 @default.
- W2017148905 hasConcept C153180895 @default.
- W2017148905 hasConcept C154945302 @default.
- W2017148905 hasConcept C187954543 @default.
- W2017148905 hasConcept C196216189 @default.
- W2017148905 hasConcept C2776350087 @default.
- W2017148905 hasConcept C2776401178 @default.
- W2017148905 hasConcept C2781195486 @default.
- W2017148905 hasConcept C41008148 @default.
- W2017148905 hasConcept C41895202 @default.
- W2017148905 hasConcept C47432892 @default.
- W2017148905 hasConcept C53533937 @default.
- W2017148905 hasConcept C544519230 @default.
- W2017148905 hasConcept C63099799 @default.
- W2017148905 hasConcept C71924100 @default.
- W2017148905 hasConcept C89600930 @default.
- W2017148905 hasConceptScore W2017148905C115961682 @default.
- W2017148905 hasConceptScore W2017148905C124504099 @default.
- W2017148905 hasConceptScore W2017148905C126838900 @default.
- W2017148905 hasConceptScore W2017148905C131720326 @default.
- W2017148905 hasConceptScore W2017148905C138885662 @default.
- W2017148905 hasConceptScore W2017148905C142724271 @default.
- W2017148905 hasConceptScore W2017148905C153180895 @default.
- W2017148905 hasConceptScore W2017148905C154945302 @default.
- W2017148905 hasConceptScore W2017148905C187954543 @default.
- W2017148905 hasConceptScore W2017148905C196216189 @default.
- W2017148905 hasConceptScore W2017148905C2776350087 @default.
- W2017148905 hasConceptScore W2017148905C2776401178 @default.
- W2017148905 hasConceptScore W2017148905C2781195486 @default.
- W2017148905 hasConceptScore W2017148905C41008148 @default.
- W2017148905 hasConceptScore W2017148905C41895202 @default.
- W2017148905 hasConceptScore W2017148905C47432892 @default.
- W2017148905 hasConceptScore W2017148905C53533937 @default.
- W2017148905 hasConceptScore W2017148905C544519230 @default.
- W2017148905 hasConceptScore W2017148905C63099799 @default.
- W2017148905 hasConceptScore W2017148905C71924100 @default.
- W2017148905 hasConceptScore W2017148905C89600930 @default.
- W2017148905 hasIssue "1" @default.
- W2017148905 hasLocation W20171489051 @default.
- W2017148905 hasOpenAccess W2017148905 @default.
- W2017148905 hasPrimaryLocation W20171489051 @default.
- W2017148905 hasRelatedWork W1971623867 @default.
- W2017148905 hasRelatedWork W2034357866 @default.
- W2017148905 hasRelatedWork W2052253960 @default.
- W2017148905 hasRelatedWork W2531045332 @default.
- W2017148905 hasRelatedWork W2547897849 @default.
- W2017148905 hasRelatedWork W2561072616 @default.
- W2017148905 hasRelatedWork W2795417921 @default.
- W2017148905 hasRelatedWork W2889366376 @default.
- W2017148905 hasRelatedWork W2901148276 @default.
- W2017148905 hasRelatedWork W3131871818 @default.
- W2017148905 hasVolume "9" @default.
- W2017148905 isParatext "false" @default.
- W2017148905 isRetracted "false" @default.
- W2017148905 magId "2017148905" @default.
- W2017148905 workType "article" @default.