Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017149287> ?p ?o ?g. }
- W2017149287 endingPage "710" @default.
- W2017149287 startingPage "681" @default.
- W2017149287 abstract "Certain aspects of traffic flow measurements imply the existence of a phase transition. Models known from chaos and fractals, such as nonlinear analysis of coupled differential equations, cellular automata, or coupled maps, can generate behavior which indeed resembles a phase transition in the flow behavior. Other measurements point out that the same behavior could be generated by geometrical constraints of the scenario. This paper looks at some of the empirical evidence, but mostly focuses on different modeling approaches. The theory of traffic jam dynamics is reviewed in some detail, starting from the well-established theory of kinematic waves and then veering into the area of phase transitions. One aspect of the theory of phase transitions is that, by changing one single parameter, a system can be moved from displaying a phase transition to not displaying a phase transition. This implies that models for traffic can be tuned so that they display a phase transition or not. This paper focuses on microscopic modeling, i.e., coupled differential equations, cellular automata, and coupled maps. The phase transition behavior of these models, as far as it is known, is discussed. Similarly, fluid-dynamical models for the same questions are considered. A large portion of this paper is given to the discussion of extensions and open questions, which makes clear that the question of traffic jam dynamics is, albeit important, only a small part of an interesting and vibrant field. As our outlook shows, the whole field is moving away from a rather static view of traffic toward a dynamic view, which uses simulation as an important tool." @default.
- W2017149287 created "2016-06-24" @default.
- W2017149287 creator A5014174129 @default.
- W2017149287 creator A5020244234 @default.
- W2017149287 creator A5044366009 @default.
- W2017149287 date "2003-10-01" @default.
- W2017149287 modified "2023-10-14" @default.
- W2017149287 title "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling" @default.
- W2017149287 cites W1496182692 @default.
- W2017149287 cites W1507326514 @default.
- W2017149287 cites W1533788422 @default.
- W2017149287 cites W1601100443 @default.
- W2017149287 cites W1660471769 @default.
- W2017149287 cites W1837485852 @default.
- W2017149287 cites W1963691321 @default.
- W2017149287 cites W1965743553 @default.
- W2017149287 cites W1968719911 @default.
- W2017149287 cites W1969336240 @default.
- W2017149287 cites W1972044564 @default.
- W2017149287 cites W1972738704 @default.
- W2017149287 cites W1973549878 @default.
- W2017149287 cites W1974385557 @default.
- W2017149287 cites W1979690402 @default.
- W2017149287 cites W1988264093 @default.
- W2017149287 cites W1989900524 @default.
- W2017149287 cites W1992491240 @default.
- W2017149287 cites W1992594519 @default.
- W2017149287 cites W1994466062 @default.
- W2017149287 cites W1999974348 @default.
- W2017149287 cites W2003115879 @default.
- W2017149287 cites W2004455665 @default.
- W2017149287 cites W2004579757 @default.
- W2017149287 cites W2005293697 @default.
- W2017149287 cites W2006608049 @default.
- W2017149287 cites W2006820335 @default.
- W2017149287 cites W2011931151 @default.
- W2017149287 cites W2013271219 @default.
- W2017149287 cites W2014346895 @default.
- W2017149287 cites W2015736664 @default.
- W2017149287 cites W2019490751 @default.
- W2017149287 cites W2022192104 @default.
- W2017149287 cites W2024113352 @default.
- W2017149287 cites W2029463466 @default.
- W2017149287 cites W2029465969 @default.
- W2017149287 cites W2031566821 @default.
- W2017149287 cites W2032137277 @default.
- W2017149287 cites W2032549372 @default.
- W2017149287 cites W2036715505 @default.
- W2017149287 cites W2037079232 @default.
- W2017149287 cites W2037141248 @default.
- W2017149287 cites W2041890703 @default.
- W2017149287 cites W2049176600 @default.
- W2017149287 cites W2049514092 @default.
- W2017149287 cites W2049587182 @default.
- W2017149287 cites W2049951355 @default.
- W2017149287 cites W2051301244 @default.
- W2017149287 cites W2052831528 @default.
- W2017149287 cites W2053416550 @default.
- W2017149287 cites W2054210802 @default.
- W2017149287 cites W2054984511 @default.
- W2017149287 cites W2056847554 @default.
- W2017149287 cites W2059797628 @default.
- W2017149287 cites W2061194039 @default.
- W2017149287 cites W2062488183 @default.
- W2017149287 cites W2070936113 @default.
- W2017149287 cites W2071408492 @default.
- W2017149287 cites W2071969188 @default.
- W2017149287 cites W2073465262 @default.
- W2017149287 cites W2074310496 @default.
- W2017149287 cites W2085725498 @default.
- W2017149287 cites W2086187408 @default.
- W2017149287 cites W2087027888 @default.
- W2017149287 cites W2087148973 @default.
- W2017149287 cites W2089080831 @default.
- W2017149287 cites W2092690092 @default.
- W2017149287 cites W2093921901 @default.
- W2017149287 cites W2094167530 @default.
- W2017149287 cites W2098304112 @default.
- W2017149287 cites W2101762874 @default.
- W2017149287 cites W2114747222 @default.
- W2017149287 cites W2124298315 @default.
- W2017149287 cites W2139903549 @default.
- W2017149287 cites W2154376416 @default.
- W2017149287 cites W2155246004 @default.
- W2017149287 cites W2165103693 @default.
- W2017149287 cites W2170771547 @default.
- W2017149287 cites W2171672947 @default.
- W2017149287 cites W2171811125 @default.
- W2017149287 cites W2963469840 @default.
- W2017149287 cites W3098096425 @default.
- W2017149287 cites W3099165892 @default.
- W2017149287 cites W3101070418 @default.
- W2017149287 cites W3104556324 @default.
- W2017149287 cites W3104686156 @default.
- W2017149287 cites W3105491600 @default.
- W2017149287 cites W3122700123 @default.
- W2017149287 cites W4236823571 @default.
- W2017149287 cites W4240986989 @default.